_

Sopra

group =

Abap Web Dynpro

Recommendations and best practices

TALENTED E TOGETHER

Abap Web Dynpro Best Practices = 29/11/2009

.I Abap Web Dynpro
Programming notes for AWD applications

m This document contains useful notes on programming Web Dynpro
ABAP applications and optimizing performance. These notes are
intended primarily for application developers who already have a
sound knowledge of the Web Dynpro Framework. You can find the
complete developer documentation about Web Dynpro ABAP under

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Special Features of Web Dynpro ABAP
Programming

m There are some differences in programming Web Dynpro ABAP components to standard
ABAP programming.

You cannot use lists, nor dynpro and control technology in Web Dynpro ABAP programming. For
example,

CALL/LEAVE TO SCREEN
LEAVE TO LIST-PROCESSING
WRITE / ULINE / HIDE

MESSAGE

The program flow cannot be changed in Web Dynpro ABAP programming. You cannot use
statements to exit the current session or to start a new one. For example:

CALL /LEAVE TO TRANSACTION
SUBMIT

LEAVE PROGRAM
You cannot use certain system commands in Web Dynpro ABAP programming. For example:
EDITOR-CALL

SYNTAX-CHECK/GENERATE

Functional enhancements of Web Dynpro components, such as methods and event handlers are
called by Web Dynpro Framework. This fills all parameters. There is therefore no need to query
the parameter interface.

IS SUPPLIED

IS REQUESTED

The integration of type pools and program includes is not supported in Web Dynpro ABAP
programming.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Number, Size, and Genericness of
J Components

The Ideal Design of a Component

m Communication between components requires work and makes the
performance of the application suffer. Despite this, you should not
make each component too big. You need to balance these
requirements, while making sure that each component is a self-
contained logical unit. You must always prevent different
development groups from working on the same component. We have
put together the following guideline for the optimum number of views
In @ component:

Whenever possible, restrict your components to a maximum of 15
= views.

m Make sure that the number of controllers used by each controller
does not exceed 8. Remember, at runtime you create a load from
your components. The size of this load depends to a great extend on
the number of views, Ul elements, controllers, controller usages, and
the size of the context nodes. If this load is too big, the system
produces a warning telling you that limited resources are available at
runtime for the WDA application. Performance drops.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

I Number, Size, and Genericness of

Components
View or Component

m A component is a reusable unit in the Web Dynpro Framework. A
view can be displayed only once within a component; a component,
however, can be instantiated multiple times. This means that, if you
want a view to appear more than once in a window, you must make it
a separate component and reuse it multiple times in a different
component.

A component is a visual unit. For this reason, we recommend that you

embed only one interface view on the window of the "using" component
for each declared component usage.

m Model component:

We no longer recommend that you create special model components,
since they do not offer any benefits over model classes. One alternative
is to use a shared assistance class to provide a model

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Number, Size, and Genericness of
J Components

The Genericness of Web Dynpro Components

m Generic components are more difficult to maintain than explicitly
programmed components, which is why we recommend that you
make all your components only as generic as they absolutely need to
be. This requirement needs to be balanced with the demands of
distributed application development groups. These groups need to
provide generic components that are then, for example, given a
uniform layout at a later time or by a different group. As a guideline,
we recommend that you make your applications generic to the extent
that, when the resulting component is configured, around 80% of all
applications are covered. Do not try to make your component more
generic just to cover the remaining 20% of the possibilities.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Context

m A contextin Web Dynpro ABAP is a complex construct that gives you great freedom
when you design your applications. The way an application handles quantities of data is
usually of great significance for its performance; as a developer, you have an opportunity
here to control the time needed by your application, but there are also risks to consider.
Today, performance optimization is important for many applications, particularly more
complex applications, and must be considered in the design of every new application or
application group. The following sections offer you a range of useful information about
how best to use various context properties and context features.

m [f you want to use an element in multiple contexts, but intend to modify it only rarely if at
all, it is best to create a copy of the element in the appropriate context. You must,
however, ensure that the data always remains consistent. Another option is to store the
content of the context node as an internal table initially, and to store it as an actual
context node only within the relevant view.

m Define a mapping to context nodes of used components only in exceptional cases. This
can cause a drop in performance, and any changes within the used component can
cause errors in the main component.

m An alternative to this is the shared usage of an assistance class instance. For more
information about this, read the description of the example application
— and examine its implementation in your system in
package SWDP_DEMO.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

J Context

Handling Context Mappings

A context mapping is a mechanism that enables you to make static connections between
different contexts in different controllers. If, for example, you require a set of data in
exactly the same structure but in two different views, it is a good idea to configure a
suitable context node in the component controller. In a single action, you can then create
a copy of the component controller node for each view controller in the Workbench's
View Editor; at the same time, a mapping to the original node is created. This procedure
is both easy to implement and very secure. It does, however, encourage you to start
designing contexts in a component by designing the component controller context first,
and then only defining the required mappings for the view contexts. Depending of the
size of the context node (number and structure of the subnodes, and the absolute size of
the data), this can have a significant effect on the performance of the application. To
avoid using superfluous mappings in your component, consider carefully which context
nodes you actually require in multiple contexts, and which nodes you only require locally.

A context node is not filled until the corresponding context is called for the first time.
Unlike a context node mapped to a central node, a context node created locally is empty,
until the corresponding view is accessed. To avoid errors in dialogs, it is a good idea to
provide the data for the context of the follow-on view before the actual navigation step is
triggered. Since an instance of the follow-on view has not yet been created, you must
now decide whether to configure a component controller context with an appropriate
mapping, or whether to fetch and check the data in an auxiliary class first and only pass it
to the context of the follow-on view after navigation is completed. An application
developer would, of course, prefer to use the context mapping method; using an auxiliary
class, however, improves performance significantly.

Sopra

group =

Abap Web Dynpro Best Practices —29/11/2009

Context

Dynamically Created Attributes or Dynamically
Created Nodes

m Context nodes and context attributes can be created dynamically in
the Web Dynpro ABAP framework. The dynamic creation of these
features is relevant from a performance perspective, but is not
particularly significant if only one attribute is being created. If,
however, you want to create multiple attributes for a context node
dynamically and in parallel, it is a much better idea to first create a
structure. The whole of the new node is then created in a single step.
For an example of the dynamic creation of a node from a structure,
refer to the Web Dynpro application DEMODYNAMIC in the package
SWDP_DEMO in your system. The method WDDOINIT in the view
DYNAMIC NODE_TYPE creates a structure first and then the
required node information is created from this structure.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Context

Singleton Node

m \When you create a context node below the root node, the "Singleton”
checkbox is selected by default. If you have deep data structures
with large amounts of data, we recommend that you consider only
loading the data for the selected element of the main node into the
memory. The other factor that you need to consider, however, is the
performance loss connected to the required invalidation and refilling
of the corresponding context node or nodes. You need to decide
whether to minimize the memory load created by large amounts of
data or minimize the runtime caused by invalidation and filling
actions. Use singleton nodes only if the data in the memory will reach
a critical amount if you take no action. If not, you may prefer to work
with non-singleton nodes and delete any data that you do not yet
need, or will never need, from the memory explicitly.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

J Context

Filling the Context: Supply function

m The "Supply" function lets you supply a node with node only when
required. The supply function is not called until the content of the node is
actually needed at runtime (and only then). Since runtime controls when
the supply function is called (and not the code created by the application
developer), it is especially important that no errors occur when the data
is retrieved. For this reason, use the supply function only if you know that
the data is available and correct in the back end.

m Supply functions are especially suited for filling subnodes, whether they
are singleton nodes or non-singleton nodes. However, you must note the
following: The required content of a subnode can be dependent only on
one element of the corresponding superordinate node. This is the only
way of ensuring that instances of all required nodes are created and that
the values exist. The following figure illustrates the interactions:

—— MNode 1

| sSubnode s1 [« Filled by
supply function

| Node 2 Filled by
supply function

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

ConTeXT —— Node 1

| subnode s1 |« Filled by
supply function

Possible Dependencies of Supply Functions

| Node 2 Filled by
supply function

m The subnode s1 of the node node1 can always be filled by a supply function if the required data only
depends on the value of an element of the node node1. In this case, there is an implicit guarantee that
this value already exists, because an instance of the node node1 already exists. It can, however, be the
case that the data selected for s1 depends on the value of an element of the node node2. However,
there may not yet be an instance of the node node2 available when s1 is filled. If the node node2 is also
filled by a supply function, it may occur that the supply function of s1 must itself first call the supply
function of node node2. A cascading call of two or more supply functions is invalid and causes a runtime
error. Therefore, if you need to access the data of a superordinate node other than the direct
superordinate node to fill a context node, do not use the supply function; instead, program the required
data retrieval function in an appropriate event handler method. If this is really not possible, at least
ensure that any runtime errors are caught and handled correctly.

m [f you want to trigger the call of a supply function explicitly before the content of the node is used for the
first time, you can use the method get_element ().

m A supply function always recognizes the parameters PARENT_ELEMENT and NODE automatically.
The parameter PARENT_ELEMENT is a reference to the element of the superordinate node (in the
example above, an element of the node node1), whose value must be read to retrieve the data; the
parameter NODE, however, is a reference to the node that is filled by the supply function (s1 in our
example). You must use these two parameters. It is much more difficult to use a generic method
involving generic context methods. There are no real benefits and it is also more prone to errors.

m Make sure that you never modify the CONTEXT_NODE_INFO of a context node within a supply
function. A supply function must also never modify the ValueSet of a node. This causes complications
since the order of the steps performed at runtime may no longer match the values.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Context

Context Change Log

m Use the Context Change Log functions to detect user input. This has
particular performance benefits while a user of the application
modifies only a small amount of data in a view while displaying a
large amount of mixed data.

Sopra

group =

Abap Web Dynpro Best Practices —29/11/2009

Context

Properties of Context Attributes

m Each context attribute has four predefined properties: readOnly,

visible, state and enabled. The values of these properties can be set
with the interface IF. WD_CONTEXT_ATTR. The Web Dynpro
Framework allows Ul element properties with the same name to be
bound to the respective attribute property, which means the number
of the nodes can be significantly reduced in the context. This
improves performance and reduces memory requirement. Refer to
the Programming Manual in the document Properties of Context
Attributes for more information.

Sopra

Abap Web Dynpro Best Practices —29/11/2009

J Conftroller

Handling Controller Methods

m As well as contexts, a controller also includes methods for handling the
values of the context attributes, and for triggering and handling events.
Important information about this is available in the Programming Manual for
Web Dynpro for ABAP. Alongside these predefined method structures, you
can create your own methods and call them from your application. The
greater the size of a Web Dynpro application, the more effective it becomes
to move its logic into separate auxiliary classes. This makes the methods
much more flexible, since you can use these auxiliary classes in other
application. Web Dynpro Framework itself implements an assistance class.
The inherited type of this class gives it special properties that can be used as
appropriate by Web Dynpro Framework. In addition, you can create your own
auxiliary classes and structure them to match your application landscape.

m Independent auxiliary classes have the additional benefit of optional
parameters.

m Remember that the methods from auxiliary and assistance classes can be
= called directly from view controllers as well

Sopra

group =

Abap Web Dynpro Best Practices —29/11/2009

Conftroller

Handling Method Attributes

m \We also recommend that you create method attributes in separate
auxiliary classes, and reference them from the Web Dynpro
methods.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Conftroller

Events

m Events and event handling in Web Dynpro for ABAP are not identical
to the similar concepts in ABAP.

A m In particular, events can be caught and handled only if a controller
usage is entered for both controllers involved.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Conftroller

Notes on Assistance Classes

m Assistance classes are instantiated with their component.

m If a particular assistance class is accessed from various components

in @ component chain, it makes sense to create the class in the main
A component and then pass it to the subcomponents.

m More information is available under
DEMO_COMMON_ASSISTANCE1

Sopra

group =

Abap Web Dynpro Best Practices —29/11/2009

User Interface

m You can use many different Ul elements when designing the user
interface of a Web Dynpro ABAP application, and you can combine
and nest these elements in many different ways. The latter aspect of
Ul design can, however, cause overly complex views to be created
that not only tax the user but are also bad for the application's
performance. For these reasons, always avoid making the structures
in your views overly complex if at all possible.

Sopra

group = Abap Web Dynpro Best Practices —29/11/2009

User Interface

Matrix Layout

m In a view layout with a regular level of complexity, always use the

matrix layout even if the default setting of the View Editor is a flow
layout. A matrix layout benefits you by providing several formatting
utilities that are otherwise very difficult to design. A matrix layout is
not, however, suitable if you want your view to have a very simple
layout. In this case, use a flow layout or grid layout for performance
reasons.

In a matrix layout, the properties “strechedHorizontally” and
“strechedVertically” are set by default. Disable the
“strechedVertically” property, since it can often cause browser errors
at runtime. For Ul elements embedded in matrix layout, you can
define vaues for height and width under LayoutData. The values you
enter here are defined as pixel values ("px") by default. You can
change this unit from "px" to "em" or "ex" (see the CSS Standards).

Sopra

Abap Web Dynpro Best Practices —29/11/2009

J User Interface

Dynamic Programming

m Web Dynpro ABAP enables you to manipulate the view layout dynamically,
which means you can create, modify, or remove specific Ul elements at
runtime. The user of the application can personalize some properties of Ul
elements though, making the application developer unaware of the values of
these properties.

m [f you use dynamic methods to create a Ul element, make sure that you give
each element an element ID. Technically, this is an optional property, but it is
a great help when the element is processed. Implicit personalization can work
only if an ID is set, since stable assignments of values can only be made to
the same Ul element. If you do not define an element ID, the elements are
given new random IDs each time they are called and the personalized values
cannot be assigned.

m You often do not know how many elements need to be created at design
time. For example, if you want to create a form dynamically, and you do not
know its context nodes at design time, you must assign element IDs
generically. In this case, ensure that your chosen algorithm provides unique
results. Simply numbering the elements sequentially is not enough to ensure
that each dynamic Ul element appears in the right position in the view. For
example, a "Price" attribute may appear as the third attribute in node A, but
as the fifth attribute in the structure in node B. In this case, it is more effective
to use the attribute name as the element ID.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

User Interface

ALV Component

m The ALV component offers application developers a range of
integrated services that they can use directly without any additional
programming work. These services includes functions such as filters,
sort functions, and total functions. However, each additional ALV
component you use increases runtime significantly; the table Ul
control is quicker for displaying simple tables. Use the ALV
component only if you are sure you need its extra functions. Always
choose a simple Web Dynpro table if sufficient for your application.

m When you use an ALV component, you can pass the data for display
using either a regular cross-component mapping or an external
context mapping.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

User Interface

Configuration Options

m Make use of the personalization and configuration options when you

develop your applications. WWhen you create generic components,
however, remember that subsequent application developers may
themselves want to add dynamic Ul elements. It is not a good idea to
define a maximum set of Ul elements at the beginning and assume
that many of these elements will be deactivated later. Restrict
yourself only to those elements that you actually need when you
create your components.

Sopra

Abap Web Dynpro Best Practices —29/11/2009

Delta Rendering

Configuration Options

m View-based delta rendering is used to improve the performance of
user interaction in complex applications when only a part (view) of
the displayed page has to be updated. Only the view that has been
changed is newly rendered. If several views have been changed, the
view rendered is the one containing the changed views and any
views beneath it, which means that only a certain part of the page is
replaced. For programming, this means that you should avoid
unnecessary context updates, and avoid making changes to view
elements.

m By default all Web Dynpro applications run without delta rendering.
You can activate delta rendering for an individual application using
application parameter “wdDeltaRendering” in the following way:

Setting Delta Rendering Using Application Parameter
WDDELTARENDERING

or

Setting Delta Rendering Using URL Parameter sap-wd-DeltaRendering

Sopra

group =

Abap Web Dynpro Best Practices —29/11/2009

J Delta Rendering

Implementing Delta Rendering

m \WWe recommend you use delta rendering for complex pages on which
usually only a part of the page is updated.

m Critical for the success of delta rendering are:

The design of each view
Read-write access is assigned only to objects to be updated (context,
view elements)

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

J Delta Rendering

Delta Rendering Functions

The purpose of delta rendering is to update only the area of the displayed
page that has been changed by the application. The granularity for these
updates is a view. Only one area at a time is updated, and accordingly the
most inward view of all changed views is refreshed. In the most unfavorable
case this is the top view of the application.

To determine which views have to be updated, any changes to the Web
Dynpro programming interface that could lead to a change in the visualization
of a view are registered:

Navigation

Change to the Ul element tree

Personalization change

Changes to Context and “ContextNodelnfos”

Messages

No check is made whether this acually results in a changed value. Just a call
to a changing method results in the view being updated.

User interaction with screen elements also result in the view being updated

When using context mapping, a change operation to a mapped context node
and its subnodes results in an update to each view that maps to these nodes.
It is irrelevant whether the subnodes or attributes in the development
environment have been copied to the mapping or not.

Sopra

group =

Abap Web Dynpro Best Practices —29/11/2009

Delta Rendering
Effect of Delta Rendering & Restrictions

m Since delta rendering already starts before the "costly" rendering
process, in appropriate scenarios significant performance

Improvements can be achieved in the server as well as in the Web
Browser.

m The following Ul elements are not (yet) supported by delta rendering:
TimedTrigger
Gantt
Network

InteractiveForm
OfficeControl

Sopra

group =

Abap Web Dynpro Best Practices —29/11/2009

Delta Rendering

Possible Side Effects

m If an application uses very fine-granular change operations (for

example SET_ATTRIBUTE calls for each field of a context node
instead of BIND_TABLE), delta rendering can lower
performance.

Delta rendering errors may occur due to JavaScript errors when
calling document.getElementByld(...) after a server roundtrip, or
because screen areas have not been updated. If errors occurs
see SAP Note 1021981.

Sopra

Abap Web Dynpro Best Practices —29/11/2009

Gantt Charts

m A Gantt chart is used for displaying multilayer bar charts, usually
over a defined time period. For instance, they can be used for
displaying an overview of the progress of a project.

m Web Dynpro ABAP provides two very different technical
implementations of Gantt charts:

JGantt Integration
|IGS interface

Sopra

group Abap Web Dynpro Best Practices —29/11/2009

Gantt Charts

JGantt Integration

m Web Dynpro ABAP provides a defined interface for a JGantt control.
JGantt is a variant of the JNet control and is based on a specially
formatted XML file.

m With this type of Gantt chart users can change values at runtime. For
instance, you can move bars along the time axis or increase the
length of bars. This flexibility is made possible by the high complexity
of the JGantt control. The Ul Element Gantt is one of the Ul elements
provided in Web Dynpro ABAP and can be found in the graphic
category.

Sopra

group =

Abap Web Dynpro Best Practices —29/11/2009

Gantt Charts

Interface for Internet Graphics Service (IGS)

m In many cases you actually only want to show a static display of
values and their relationships in a Gantt chart. If so, you do not need
the flexible but highly complex options offered by the JGantt control,
and instead you should use the BusinessGraphics Ul element. This
Ul element itself is very flexible, and can be used in various display
formats by using the attribute chartType, such as BusinessGraphics

(chartType gantt).

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Multiple Parallel Applications

Separate Roll Areas

m Each Web Dynpro application runs in its own role area. Multiple
applications can run in parallel or communicate with each other only
if one of the following is used:

The database

shared objects/shared memory,
Portal events

m For this reason, it is not possible to close an application by closing
another application (that is, closing a browser window). You must
A therefore make sure that a self-contained task creates only one
application. This reduces both programming work and the number of
browser windows for the user.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Multiple Parallel Applications

Dialog Box

m Dialog boxes (often called popups) are special display elements that
open alongside a running application. Dialog boxes always start a
separate phase model instance, which means that their source
window cannot be refreshed or edited while the dialog box is open
(while the phase model instance still exists). You can avoid dialog
boxes in many cases by displaying content in an additional window
view. This removes the source of many errors and improves
performance.

m Modeless dialog boxes are not supported.

{

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

J Using Components and Component

Intferfaces
Components and Interface Definitions

m The Web Dynpro Framework enables you to use functions and data from one
component in another by using a component in another component. A
prerequisite for this is that a usage declaration is created in the "using"
component at design time. This itself requires the used component to exist
and be recognized by its name. This is not always the case, however. To help
you in cases whether the used component cannot be identified, Web Dynpro
Framework offers a less rigid technology: Component interface definitions. In
this case, you first enter the usage of a separately defined component
interface. All components that implement precisely this interface definition can
now be used by means of the usage declaration from the main component.
The concrete implementation of this method is passed as a parameter at
runtime.

m Example: If a component wants to embed two components that are not yet
known at design time, all components that are able to be embedded must
implement a common interface definition. The calling component creates two
usages for the interface. At runtime, the implementation is passed as a
parameter when the used components or interfaces are created.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Using Components and Component
J Interfaces

General Information About Handling Interfaces

m A component can implement multiple interfaces.
m Interfaces cannot be inherited.

m You can implement interfaces in the Application Configuration or by
calling them as ULR parameters.

A m Interfaces do not implement their own namespaces. We recommend
strongly that you use prefixes when you name your interfaces.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Using Components and Component
J Interfaces

Implementation of Interfaces for Customer
Developments

m Using interfaces in a Web Dynpro component benefits customers by
giving them a clean basis for their own further developments. When
creating a local development, you can implement a used interface in
a separate component and add your own aspects to an application
delivered by SAP.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Using Components and Component
J Interfaces

Usage Groups

m In certain circumstances, you may want a main component to use an
individual component more than once. To enable this, you can create
multiple usages for the same component. The same applies to the
usage of interface definitions.

m As long as the number of used components is reasonable and known
already at design time, we recommend that you use a usage group
instead of a static list of individual usages. Usage groups organize
the dynamically programmed use of components or interface
definitions.

m Before you decide to use a solution that involves dynamic
component usages, remember that you also need to program
o navigation to any components whose use is implemented using
usage groups. This makes navigation more complicated and also
means that the application is more difficult to maintain.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Creating and Deleting Components and

Views

m [he most important way to save memory is to only call on those

resources currently needed. For Web Dynpro this means only keep
those components and views in the memory that are currently being
displayed.

The prerequisite for this is that an application has a modular
structure, which means it does not have to keep hold of all
components at the same time.

If this prerequisite is fulfilled, another important issue concerns
dynamic creation and deletion of components and views.

Sopra

Abap Web Dynpro Best Practices —29/11/2009

Creating and Deleting Components and
J Views
Components

m Component COMP_A has component usage USAGE_A Bin
component COMP_B. Web Dynpro instantiates component COMP_B
for component usage in the following cases:

An interface view from COMP_B is made visible in a currently visible

window of COMP_A (see views)
A context mapping exists from COMP_A to the context of COMP_B

m Otherwise component COMP_B is not automatically instantiated. If a
component is no longer needed, this should be deleted using
DELETE _COMPONENT. Indeed, no component views must still be
visible, and there must be no context mapping.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

J Creating and Deleting Components and

Views
Views

m The lifespan of a view is defined by its visibility: A view is automatically
instantiated as soon as it is made visible. If the view has setting Lifespan:
when visible, the view is deleted as soon as it is no longer visible. Otherwise
the view can only be deleted by removing the entire component.

m The concept, visible, is used in different ways in Web Dynpro and can
therefore easily be misunderstood. What is actually visible on the screen
ultimately depends on the views visible in the view assembly and on the
visibility of the individual Ul elements (property visibility).

m \When we refer to the visibility of views, as above, we are referring to the view
assembly. The view assembly is the tree of visible views of a window. One
view is always visible for each window and view container. Whether a view is
instantiated or not depends only on the view assembly and not on the visibility
of Ul elements.

m A view is made visible and therefore also instantiated when it is embedded in
a visible window and marked as a default view, or is navigated to when one of
its inbound plugs is activated. It becomes invisible when the user navigates to
another view in the same window or view container.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

J Creating and Deleting Components and

Views
Memory Saving Scenarios

m Use of Lifespan: when visible

If you use this setting, the view is deleted when it becomes invisible as a
result of user navigation (as described above). You should choose this
setting if the view is not repeatedly used in the application.

If the view becomes invisible, the following happens: Method WDDOEXIT
is called. The view controller and its attributes, the local view context, and
the Ul element tree are deleted. Note that the memory can only be
released when these things are not being referenced by other objects.
Therefore, do not keep any references from the view, context, Ul
elements, or context nodes, elements, node infos, and so on, outside of
the view. Otherwise, application developers will be responsible for
removing these references.

If you think you may want to return later to the Ul status (for example, the
first visible table row), you have to keep it outside of the view: For
example, as an attribute of the assistance class or context node of the
component controller that is mapped to the view.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Views
Making Views Visible Dynamically

Creating and Deleting Components and

m In the view container for VIEW_A embed VIEW_ B and
EMPTY_VIEW in the window. Set EMPTY_VIEW as the default. For
VIEW _A create an outbound plug TO_VIEW_ B and for VIEW_B
create an inbound plug IN. Connect both plugs in the window.

m VIEW_Bis now not automatically instantiated with VIEW _A. Instead,
EMPTY _VIEW is used as the placeholder. By triggering plug
TO_VIEW_B, VIEW_B then becomes visible. You can then also use
the plug to notify VIEW _B which object it is to display.

Sopra Abap Web Dynpro Best Practices —29/11/2009

group =

Creating and Deleting Components and

Views
TabStrip: Make visible for active tab only

m Each tab of a TabStrip is to make another view visible. For each tab

a “ViewContainerUIElement” must be created, and this in turn must
have a view container in the wndow. The view to be displayed is
embedded in the view containers. Since there must always be a
default view for each view container, they are therefore all default
views. This means that all views are immediately instantiated.
Proceed as described in the example below.

m Example application DEMO_TABSTRIP_VIEWS

Sopra

Abap Web Dynpro Best Practices —29/11/2009

