‘\B‘\p ABAP

tutor-lalspomt

= MPLYEASYULEARNII

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia _.‘ https://twitter.com/tutorialspoint

SAP ABAP

About the Tutonal

ABAP (Advanced Business Application Programming), is a fourth-generation programming
language, used for development and customization purposes in the SAP software.
Currently positioned along with Java, as the main language for SAP application server
programming, most of the programs are executed under the control of the run-time
system. This tutorial explains the key concepts of SAP ABAP.

Audience

SAP ABAP is a high level language that is primarily used to develop enterprise application
for large business and financial institution on SAP platform. This tutorial is designed for
those who want to learn the basics of SAP ABAP and advance in the field of software
development.

Prerequisites

You need to have a basic understanding of Java programming and Database technologies
like PL/SQL to make the most of this tutorial.

Disclaimer & Copyright

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com.

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

mailto:contact@tutorialspoint.com

SAP ABAP

Table of Contents

ADOUL TNE TULOITAL c.eviiiiieeiie ettt ettt s e e b e e s abe e bt e e sabeesateesabeesateesabeesaseesabaesaseenas i

F Y0 Lo [T o ol OO TSSO UPRRUPPUORRTRN i

e =T =T o UL =TT PP TP PO PPPPPTRTRN i
DiSCIAiMEr & COPYIIBNT ...eeeieiiieiieeet ettt et st e e st e st e st e e et e e sabeeeabeesabeesabeesaneesaneenas i

BRI o (o] o] 01 =Y o} £ PRSP PPTTP i

1. ABAP — OVEIVIEW cuuuuiiiiiiriieeniiiiiiiiiniasssssssiirssmsssssssssisssssssssssssisssnnnns 1
2. ABAP — ENVIFONMENT..ccciiiiiiiiiiiiiiiiiiiieieiiiteeeeeeeeeeeeeeeeeeeeeteteeteeeeresss 3
HEIIO ABAP ... ettt ettt ettt ettt e st e st e e st e e s abe e sabeesabeesaseesabeesabeesabeesabeesabeeeabeesabeeeabeesabeesabeesabaenaree s 3
USING the ABAP EQITOr ..eeeiiiiiiciie et ee ettt ettt e et e e rte e e e st b e e e eate e e ssaeeeastaeeeansseeesnsseeeenssaeesansaaeessseeenns 3
YL AT g Yo o g Y=l 2 U<T o To T o SRS 4
VIieWINg the EXISTING COUR .oiiiuiiiiiiiie ettt e et e et ae e e st e e e e sate e e e eaataeestaeeeeastaeesenssaeesssasaassseeesanses 4

3. ABAP — Screen NaVigatioN.......cccuuuuiiiiiiiiininuiiiiniiiinimmsiiiiiiiieesmsssssiiimsssssssssiimsssssssssssssssssssssssssssssssssssssss 5
(o =] Yol =T= o OO P O PTPTOPPRPOPPRN 5

B oTo] | o F- 1o [olo] o DU RUPPRRSSPR 6

F AN 2 AN ol o [o] PRSPPI 6

Ny = TaTe 1o I (I E T To I Folo T L3R RURROE 7

(o= @ & SRS 9

4. ABAP — BaSiC SYNTAX.ccuuuiiiiiiiiirenniiiiiiiiieennsieietiieesmnssssssssssssnssssssssssssnnsssssssssssssnnsssssssssssnnnssssssssssssnnnsssssssanes 10
] =0T 0 1= 01 £ PSPPSR PPPTPUPPRPPRY 10
(6] [o] T [} =1 o] o HH O TS RTPPOPPRTP 11
(07T 1410 0 T=T 01 £SO PPPTPTRROPPN 11
SUPPIESSING BIANKS ..eeiiiiiiieeeeiiieceiee et ee e ettt e s ettt e e st e e e st e e e e ateeesaaeeeasateeesaaseeeesnseeeensseeesansseessnnseeeennseeesanne 12
BIaNK LINES ..eenuteeitteeiteesitteeite ettt sttt sttt e st e s a e e s it e e sab e e s at e e sa b e e s ab e e sh b e e b bt e sa b e e e at e e shb e e bt e e nabeenneeesabeennteesareenans 12
FaTY= T o F= I 1= PP PPP R 13
YT T= =SS 13

LT V= 7Yl 0 T |- T IV« = 15
[g Lo oL = g A DY - T IV o= SRR 15
ComMPIEX AN REFEIENCE TYPES . .uveeiiiiiiee ettt ettt e ettt e e e et e e e eta e e e e stbaeeeettaeestbeeeeastaseeenstseesasbeaeesnsseeeanes 16

LT 27 Y1 T4 T 1« = N 18
SEALIC VAITADIES ..ttt st s b e st e sa b e e e ab e st e e san e e sbeesaree s 18
LT o Y Ta -] o] [T PSP PPOPPTOPPRO 19
YA =T 0 IR A= o 1TSS SN 20

7. ABAP — Constants and Literalscccovvveeeiiiiiiiiiinnniiiiiniiineeiiiiinssseesisisssssssesssisssssssseessssssssssssen 22
NUMEEIC LIEEIAIS. . ettt ettt e sttt e e s bt e s s bt e e e sbbeeeesabeeessabteeesabbaeesasbaeessasaeeesssaeenns 22

(0 T ot d Tl K =T o LS OO OO P PSR PU P RPPUPOTOTPPRIRE 22
CONSTANTS STAEEMENT ...ttt e e e ettt e e e e e e s et e e e e e e e s e abeb et e aeeesaabsbeeeeeeesannnseeeeesesannnnnees 23

LT N = 7Yl 0 o 1= =1 o N 25
F N a1 oY= ol @ o T=T =1 o] USSR 25
COMPATISON OPEIATONS ciieiiieiiiiietieeteeitttteeeeeeesebereeeeeeesaabereeeeesssassbatteasesssasssasaeeeesssassssraeesessssssssseneresssnnssnrens 26
231 A TN @ o T=] o | o U PP RSP 28

(O T = ot R] oY= @ o 11 =1 o | (RS RSNE 29

9. ABAP — LOOP CONLIOL....uueeeeeeeennnennnnnnssnns 30
]

'@j Mtutorialspoint

EIMPLYEAEYLEARMNINEG

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

SAP ABAP

F N YV T L= oY) « Nt 32
DAY 2 7Y 2l 0 T o TN 1o T o S 34
1N el LT =T I e Yo o 1Nt 36
ABAP — Continue STatemeNntcooiiiiiiiiiiiiiiiiiiiiiin st s s s s s s s s s s s aa s s ssessaees 38
ABAP — Check Statement ..o s s s s s s s s ssssssssssssssssssssssssssnsnnns 40
ABAP — EXit STat@mMeNt....ccoiirrieiiiiiiiiiiicnn s s s sa s s s s s s s s naa s sss s e e e 41
ABAP — DECISIONS ..cevvuerniiiiiiinriunsiiiiiiiirinsssiiissiiiesssssisssiimesssssssssstimessssssssesstsssssssssssssstssssssssssssssssssssssssssssnes 43
ABAP — [f STAatEMENT.....uueeiiiiiiiiiiineetiiiiiiiisinnetetisisssssssseessssssssssssssesssssssssssnssesssssssssssnsssssssssssssnnssssssssssssnns 44
ABAP — [f....EIS@ State@mMeNt....cccceiierriiiiiiiiiineeeiiiiiisssnnseessssssssssssssesssssssssssnssasssssssssssnssssssssssssssnssasssssssssnns 46
ABAP — Nested If StateMENteeeiiiiiiiiiiieniiiiiiiisneeeeiiiissssssseessssssssssssssessssssssssssssssssssssssssnssassssssssssns 49
ABAP — Case CoNtrol STate@mMeNtc.cceviiirveeieiiiiiiiiinnneeiinisisssssseesssssssssssssesssssssssssssssssssssssssssssassssssssnns 51
ABAP = STINGS ..oiiiereeeiiiiiiiieriniiiiiiniennnssisestisesnnssssssssssssnnssssssssssssnnssssssssssssnnssssssssssssnnnssssssssssssnnnssssssssaes 54
CrEatiNG STIINES «ooeieeeiieee ettt e s e e e s e et e e s sa e e e e aa b e e e s ase e e e s na e e e ean b e e e s anneeesnaeeeesraeesennne 54
SN LENGEN. .ttt ettt e s at e e s h bt e e bt e e s a bt e s ae e e sa bt e e ab e e sabeeeateesabeeeabeesabeeearee s 54
ABAP — Date and TiMEeccciiiiiiiiiieeeiiiiiiiiiiinreniiiisissssssesssisssssssssssesssnsesssssssssnns 57
LT 10 0] oL TSP UPUPPRTPPP 57
CUITENT DAta @Nd TIME ..eeeiieiiiie ettt ettt e sttt e s ettt e e sttt e e e sa bt e e s sabeeeesabbeeeeanbeeessaseeeesnbeeeenabaeesannes 58
WOrKiNg With TimMeSTamPs. oo e e e e st e e e e e setataeeeeeesesasttaeseeeesensnstaneeeessannns 59
ABAP — FOrmatting Dataccceeeeiiiiiiiiiiiieiciiiiiiernnnsesesseseennsssssesseseennssssssssssesnnssssssssssssnnnsssssssssssnnnnsssssssanes 60
ABAP — EXCeption HaNAIINGue ittt e sses s seesesssssesssseennnssssssssessnnnssssssssessnnnnssssssnanes 63
e 1T Y= (o= o] £ o] o SN 64
(07 1ol oY [T Yol =T o 4 (o o -SSR 64
FAY 270Nl 0 1T 4o - 1 o N 67
BasiC Types in ABAP DiCTIONAIYuuuiiiiiiiiieiiiiietee e ettt te e e s ettt e e e e s seatatteeeesssssanraeaeesssassssseeaeeessesssssnnneeeens 68
[TotuTo T o F= L VA I 1 &S 69
N2 Y el 0 T T 44 T 11 70
ABAP — Data Elementscccoiiiiiiiiiiiiiiiiiiiiiiinsnnnnssnnes 73
N2 Y e - 1 o] 1 77
LY < S] o] (N S =1 o S UPUR 77
Creating Tables in ABAP DiCtiONArYuuiiiiiiieiciiiiieee e eeccite e e e e e setter e e e e e e settataeeseeeseeabataeeeaessenssssaessasesenssnsens 77
ABAP — STrUCTUIES ceeeeuuiiiiiiiiiiiieiiiiiiititiiiiiiiiittetiteiiieeiteessesssiiestteesssssssiessteesssssssssssseesssssssssssssesssssssssssseees 81
ABAP — VIBWS..ceiiiiiiiiiiiinneeiiiiisissssssseesisisssssssssesssesssssssssssns 83
F N Y T ol T o 1] [TNt 86

iii

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

SAP ABAP

1N ol e Yol Q0] o T 1T o £t 89
(ool Q1Y LYol - 01] 1S 89
(@1 7CT o F= g o Yol 0] o] =T o1 SRS RSNE 90
ABAP — MOAUIAIIZAtIONceeeeeeeeeicieiiieeienceeeereeeennneeeereeeennsssseessesesnassssssssssssnnssssssssseesnnnsssssssssssnnnnsssssesanes 92
ABAP — SUDFOULINEScieiieeeieniceiiiiieeieneieeeeeeeeennssseeeesesennmssssssssesesnnssssssssesssnnssssssssssssnnnsssssssssssnnnnsssssesanns 93
Y = 7N e |/ - Vol o 1Y 96
FUNCHION IMOAUIES ... cesrreeecensee e s e eeennnssseeeeseeennnssssssssesennnssssssssesesnnnssssssssensnnnnsssssssennnnnnns 98
ABAP — INCIUAE PrOgramsS.....cccciiiiiiiiiiiiiiiiiiiiiiiiissnssnns 101
ABAP — Open SQL OVEIVIEWccuuuiiiiiiierneeiiiiiiiieennssissesiiseansssssssssssssnnssssssssssssnnsssssssssssssnnssssssssssssnnnsssssss 103
1N Y L 2) - 10 =T 0 1 T=1 o PP OOROOUPON 103
CLEAR StatemBnt ..o e e 104
L0 o B 7N) = =0 4 T=] o TR 104
Y L@ T | N = (=] 0 1= o | PPN 104
ABAP — Native SQL OVEIVIEW ...ccciiieeeiiieseesesssssessssssssessssen 106
ABAP — INterNal TabI@S....cccciiiiiiiiiieriiiiiiiiiinniiiiissisnree s sssssassse s sassse s s sssssssnsss s s s ssssssnnnsnsssssses 109
ABAP — Creating Internal Tables........cccciiiiiiiiiiiiiiii s 111
ABAP — Populating Internal Tables......ee i rrrereessse s rernessse s s s e s e s nansssssssssssnnnsssnnns 113
1N Y L 2) - 1 (=T 0 T=Y o PPN 113
FAN o D] = €=T 0 41T o | PPt 114
ABAP — Copying INterNal TADIESccoe ettt eerees e s s s s s e nnn s ssssesssnnssssssssssennnnsssnnns 116
ABAP — Reading Internal Tables ... eeeeeiciiiiiiiiicccciiireeeneessesr e seeneesssessessennnssssssssesesnnsssssssssssnnnnsssnnns 118
ABAP — Deleting Internal Tables.......ccccciiiiiiiiiiiiiiiii e 120
ABAP — Object Orientation......ccccciiiiiiiiiiiiiiiiiiisssssssssssssssssssss s ss s s s s s s s s s s s s s s s ssssssssssssssssaans 122
Y= NS 0]« =T o 124
ABAP — ClaSSeS.cceiiiiiiisissuneeriirisisssssnssesssissasssssssssssssssssassssssss 126
Class Definition and IMpPlemMeNntationooo i e e e e e e rarre e e e e s s esaataeeeeaeeeeaes 126
F N g | oYU =T UUPR 127
V{134 Yo e L3S UUR 127
Accessing Attributes and MEthOdS........o.uuiiiiiie e e e e e s e tb e e e e e e e e e snrraaeaee s 127
) =Y (ol A i 1] o 1V LSRN 128
(60e] 1 1 (U Lot {0 S PP P PP PP PP PP PPPPPPPPPTPTPTRE 129
V@ o T= =Y oY 1o T 1Y/ =1 d o To Yo £ SR 130
FN =Nl T T= T 4o = 132
P Yolol =TI @] ahu g IF=Ta Vo I Tl o =T 1 =g Vol SRS 133
Redefining Methods in SUD Classco i e e st re e e e e e st ae e e e e e e e eenbaaneaeeas 134
ABAP — PolymorphisSm ...cccciiiiiiiiiiiiiiiiiiiiiiiissssssssnnnsssns 136

iv

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

51. ABAP — ENCAPSUIAtION ...ccciiiiiiiiiiiiiiiieeieteeeetieeeeeeeeeeeeesssessessnssnsnnnns 138
[YorTo T U1 Y uToT o o)V [0} (=T o o ISR 138

DB ST ENING STIATOEY .uvruturerererururtieteteterererererer e ————a— e e—e—e—ete—e—e—eteteeesetesesesesesesesesesesesesssesesesesesasebesebnnnnebnnnen 139

L3 R 111 =T o - T LN 140
L TR0 o 1T ot YT N 143
54. ABAP — RepOort Programmingceeeeeeeeeeeeeeemeeeeeeeemememieimemiseeeesmmemiss 145
55. ABAP — DialOg Programmingcccciiiiiiiiiieeeeiiiiiiiiisnseeiiiiiississseesisisssssssesssisssssssssessssssssssssssesssssssssnns 148
Creating @ NEeW Dialog PrOZIamcocuiii i ceciie et e sttt e ettt e e e te e e e st e e e eate e e ssataeeesataeeeesreeesensneeessseaanns 149
Adding a Screen to the Dialog PrOSrameeeecciiiie ettt e s e e et e e e e are e e saaa e e e sataeesenneaeesnnneas 149
Screen Layout and Adding ‘Hello WOrld’ TEXt......uiiiciieeiiiiee ettt et esite e eetre e s tae e e eira e e e easaaeesbaeaeens 150
Creating TranSaACTION ..o e e e e e e e e 151
Yol AT a Ve o o Tl 2 o T={ - ' IO USRS 152

56. ABAP — SMArt FOIMS .ccceeiiiiiiiiiiiiiiiieieieieeeeiimiemiiiiiiiiieieeieeieeeemtsss 153
CrEatiNg @ FOMM ettt e st e s e s e nr e e e s amr e e e s s be e e s e nr e e e s nrnee s sraeeeeas 153
Creating a Text NOde in the FOIM ..ottt e 155

57, ABAP — SAPSCIIPES cceiiiiiriuueiiiiiiiiiiiuiiiiiiiietnnsiiissiinmmmsssssssssiimssssssssssssirsssnes 158
58. ABAP — CUSTOMEr EXItS.cceiiiiriiiiiiiiiiiiiiiiiiniiiieiieieieieiieieeeeeieeeeeieeeeeeeeessssseess 163
59. ABAP — USEr EXIES.cceeiieiririieeiiiiiiiiiiiieiiieieeeeeeeeeeteeieeeeeeeeeeeeeeeeeemsssemss 166
60. ABAP — BUSINESS AAA-INS..cceerriimirirrneneeeeneeeeieeeiiieeeeeeieeeeeeeieeeeeeeeeeeeeessnss 170
61. ABAP — WED DYNPIO ..ceeeeeiiiiiiiiiiieeiiiiiieennnsssssessesesnnsssssssssssssnsssssssssssssnnssssssssssssnnssssssssssssnnnssssssssssssnnnns 172
ArchiteCture Of WED DYNPIOociiceiiie ettt ettt ettt e st e e ettt e e e ettt e e e stbee e e e abaeeeeasbaessssaaeeastbeseenssaeeennsanas 172
Web Dynpro Component and WINGOWc.ueeiiiiiiiieiieeeiiieesesiee e ceree e seeesesteesssaeeesseseeeesstaeeseneeeesnssenas 173

\%

SAP ABAP

'@j Mtutorialspoint

EIMPLYEAEYLEARMNINEG

1. ABAP—Overview

ABAP stands for Advanced Business Application Programming, a 4GL (4th generation)
language. Currently it is positioned, along with Java, as the main language for SAP
application server programming.

Let's start with the high level architecture of SAP system. The 3-tier Client/Server
architecture of a typical SAP system is depicted as follows.

3-Tier Client/Server Architecture

L.

;G SAP GUI SAP GUI ;sm
- | 2 1 »

G Ve
Application !i !H
T o

Presentation

v

ABAP
AY 4

i
RDBMS

The Presentation layer consists of any input device that can be used to control SAP
system. This could be a web browser, a mobile device and so on. All the central processing
takes place in Application server. The Application server is not just one system in itself,
but it can be multiple instances of the processing system. The server communicates with
the Database layer that is usually kept on a separate server, mainly for performance
reasons and also for security. Communication happens between each layer of the system,
from the Presentation layer to the Database and then back up the chain.

Note: ABAP programs run at the application server level. Technical distribution of software
is independent of its physical location. It means basically all three levels can be installed
on top of each other on one computer or each level can be installed on a different computer
or a server.

' tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

ABAP programs reside inside the SAP database. They execute under the control of the run-
time system that is a part of the SAP kernel. The run-time system processes all ABAP
statements, controlling the flow logic and responding to user events.

So, unlike C++ and Java, ABAP programs are not stored in separate external files. Inside
the database, ABAP code exists in two forms:

¢ Source code that can be viewed and edited with the ABAP workbench tools.

e Generated code, which is a binary representation. If you are familiar with Java,
this generated code is somewhat comparable with Java byte code.

The run-time system can be considered as a virtual machine, just similar to Java virtual
machine. A key component of the ABAP run-time system is the database interface that
turns database independent statements (Open SQL) into the statements understood by
the underlying database (Native SQL). SAP can work with a wide variety of databases and
the same ABAP program can run on all of those.

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

2. ABAP — Environment

Reports are a good starting point for familiarizing yourself with general ABAP principles
and tools. ABAP reports are used in many areas. In this chapter, we will see how easy it
is to write a simple ABAP Report.

Hello ABAP

Let's get started with the common “Hello World” example.

Each ABAP statement starts with an ABAP keyword and ends with a period. Keywords must
be separated by at least one space. It does not matter whether or not you use one or
several lines for an ABAP statement.

You need to enter your code using the ABAP Editor that is a part of ABAP Tools delivered
with the SAP NetWeaver Application Server ABAP (also known as ‘AS ABAP’).

‘AS ABAP’ is an application server with its own database, ABAP run-time environment, and
ABAP development tools such as ABAP Editor. The AS ABAP offers a development platform
that is independent of hardware, operating system, and database.

Using the ABAP Editor

Step 1: Start the transaction SE38 to navigate to the ABAP Editor (discussed in the next
chapter). Let's start creating a report that is one of the many ABAP objects.

Step 2: On the initial screen of the editor, specify the name of your report in the input
field PROGRAM. You may specify the name as ZHELLO1. The preceding Z is important for
the name. Z ensures that your report resides in the customer namespace.

The customer namespace includes all objects with the prefix Y or Z. It is always used when
customers or partners create objects (like a report) to differentiate these objects from
objects of SAP and to prevent name conflicts with objects.

Step 3: You may type the report name in lower case letters, but the editor will change it
to upper case. So the names of ABAP objects are ‘Not’ case sensitive.

Step 4: After specifying the name of the report, click the CREATE button. A popup window
ABAP: PROGRAM ATTRIBUTES will pop up and you will provide more information about
your report.

Step 5: Choose “Executable Program” as the report type, enter the title "My First ABAP
Report” and then select SAVE to continue. The CREATE OBJECT DIRECTORY ENTRY window
will pop up next. Select the button LOCAL OBJECT and the popup will close.

You can complete your first report by entering the WRITE statement below the REPORT
statement, so that the complete report contains just two lines as follows:

REPORT ZHELLO1.
WRITE 'Hello World'.

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Starting the Report

We can use the keyboard (Ctrl + S) or the save icon (right hand side beside the command
field) to save the report. ABAP development takes place in AS ABAP.

Starting the report is as simple as saving it. Click the ACTIVATION button (left hand side
next to the start icon) and start the report by using the icon DIRECT PROCESSING or the
F8 function key. The title "My First ABAP Report” along with the output “Hello World” is
displayed as well. Here is the output:

My First ABAP Report
Hello World

As long as you do not activate a new report or activate a change to an existing report, it
is not relevant to their users. This is important in a central development environment
where you may work on objects that other developers use in their projects.

Viewing the Existing Code

If you look at the field Program and double-click on the value ZHELLO1, the ABAP editor
will display the code for your report. This is called Forward Navigation. Double clicking on
an object's name opens that object in the appropriate tool.

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

3. ABAP —Screen Navigation

In order to understand SAP ABAP, you need to have basic knowledge of screens like Login,
ABAP Editor, Logout and so on. This chapter focuses on screen navigation and the standard
toolbar functionality.

Login Screen

After you log on to SAP server, SAP login screen will prompt for User ID and Password.
You need to provide a valid user ID and Password and press Enter (the user id and
password is provided by system administrator). Following is the login screen.

= System Help

Log on 1 H @@ CHE o8 BHE & o
| Mew password F5 I [
Log off Shift+F3

Mew password

Client 00| |

[Fermtns |
User USERID

| i |
Passwurd I************

L -
Language

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Toolbar Icon

Following is the SAP screen toolbar.

[Menu Edit Favorktes Extras System Help * MENU BAR
= - STANDARD TOOLBAR
& ljcommamorey |+ JH SCE@@ SHE DDLOOME @@ '
=

SAP Easy Access ‘ TITLE BAR
BE & &othemens HEB P v o [Boeterwe | @il ALUCATON 001848

~ &3 Favorites
* 130 SAP Menu
v [Office
v (3 Cross-Application Components
v [cokboration Projects
* [Logistics
* (3 Accounting
¢ [:I Human Resources
¥ (3 Information Systems
v (3 Took

Menu Bar: Menu bar is the top line of dialog window.

Standard Toolbar: Most standard functions such as Top of Page, End of Page, Page Up,
Page Down and Save are available in this toolbar.

Title Bar: Title Bar displays the name of the application/business process you are
currently in.

Application Toolbar: Application specific menu options are available here.

Command Field: We can start an application without navigating through the menu
transactions and some logical codes are assigned to business processes. Transaction codes
are entered in the command field to directly start the application.

ABAP Editor

You may just start the transaction SE38 (enter SE38 in Command Field) to navigate to the
ABAP Editor.

MPLYEAEYLEARMNING

w Mtutorialspoint

SAP ABAP

& cE: " JH e DHE oDhoOo BAE &M

SAP Easy Access
(B & EHE S v a

* 3 Favarites
v I Most often used
* SPRO - Customizing - Edit Project
. kAo - Delete cost elernent
* [@ URL - zap help
+ [@ URL - rmm tables
- [@ uRL - Purchasing tables
* [@ URL - FIco tables
- [@ URL - system tables
¥ [J 5D config and Assigment
v [ASSET
= 23 SAP menu
(7 oOffice
| Cross-application Cormponents
(7 Logistics
(T Accourting
J Hurman Resources
T Information Systems
(3 Tools
(7 weblient UI Framework

* v w w w w w W

Standard Keys and Icons

Exit keys are used to exit the program/module or to log off. They are also used to go
back to the last accessed screen.

Following are the standard exit keys used in SAP as shown in the image.

MPLYEAEYLEARMNING

'@j Mtutorialspoint

SAP ABAP

&

[= ABAP Editor: Change Report YS_SEP_3

ABAP Editor: Change| Back, Exit & Cancel
e LR e o) 8 s 20 @2 Pattern Pretty Printer

~dB 1@ EHER snoa BE @ m
P S—

Report TS _SEP_3 Active
i e
2 #4 Report ¥5 SED 3
3 #4 B B
4 e
5 * 4
& * 4
7 e
g
= REPORT Y3 SEP 3.
10
11 Data: a type i, b type i, c type i.
1z

Following are

the options for checking, activating and processing the reports.

&

[ABAP Editor: Change Report YS_SEP_3

B Ce& SHER Do EE @

ABAP Editor: Change Report YS_SEP 3
o PO oo Bl s gD @R Pattern Pretty Printer

[e

ol 1 M~ .
ELARE Check, Activate, Processing] -
1 e
2 #f Report ¥5 SEP 3
3 #0 B a
i L
5 # 4
& # 0L
7]
=
= REFORT W3 _3EP 3.
10
11 Data: a type i, b type i, c type i.
1z
13 a = 0.
14
15 c o= 0.

EAEYLEARHMI G

@tutarialspoint

SAP ABAP

Log Off

It's always a good practice to Exit from your ABAP Editor or/and logoff from the SAP system
after finishing your work.

= program Edit Goto Utiities(M) Enyironment IE;{stem] Help

ﬁ- * | { 'E] @ @ ﬁ. B Create Session Ctrl-+M @ g
End Session
ABAP Editor: Initial Screen User Profile »
o1 ODaHE OO Ouebung '
Utilitizs(M) 3
List »
Services for Object
Progrann CYS_SEP_E]j Ky Objects »
Crwin Spool Requests
Subobjects Crwin Jobs
‘s Source Code Short Message
W ariants Status...
O Attributes Log off

) Documentation
T Text elements

& Dsplay | |# Change

@ tutorialspoint

EIMPLYEAEYLEARMING

4. ABAP — Basic Syntax

Statements

ABAP source program consists of comments and ABAP statements. Every statement in
ABAP begins with a keyword and ends with a period, and ABAP is ‘Not’ case sensitive.

The first non-comment line in a program begins with the word REPORT. The Report will
always be the first line of any executable program created. The statement is followed by
the program name which was created previously. The line is then terminated with a full
stop.

The syntax is:

REPORT [Program_Name].

[Statements..].

This allows the statement to take up as many lines in the editor as it needs. For example,
the REPORT may look like this:

REPORT Z_Test123_01.

Statements consist of a command and any variables and options, ending with a period. As
long as the period appears at the end of the statement, no problems will arise. It is this
period that marks where the statement finishes.

Let’'s write the code.

On the line below the REPORT statement, just type this statement: Write ‘ABAP Tutorial’.

REPORT Z_Test123_01.

Write 'This is ABAP Tutorial'.

Four things to consider while writing statements:

e The write statement writes whatever is in quotes to the output window.

e The ABAP editor converts all text to uppercase except text strings, which are
surrounded by single quotation marks.

¢ Unlike some older programming languages, ABAP does not care where a statement
begins on a line. You may take advantage of this and improve the readability of
your program by using indentation to indicate blocks of code.

10

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

e ABAP has no restrictions on the layout of statements. That is, multiple statements
can be placed on a single line, or a single statement may stretch across multiple
lines.

Colon Notation

Consecutive statements can be chained together if the beginning of each statement is
identical. This is done with the colon (:) operator and commas, which are used to terminate
the individual statements, much as periods end normal statements.

Following is an example of a program that could save some key stroking:

WRITE 'Hello'.
WRITE 'ABAP'.

WRITE 'World'.

Using the colon notation, it could be rewritten this way:

WRITE: 'Hello',
"ABAP',
'"World'.

Like any other ABAP statement, the layout doesn’t matter. This is an equally correct
statement:

WRITE: 'Hello', 'ABAP', 'World'.

Comments

Inline comments may be declared anywhere in a program by one of the two methods:

e Full line comments are indicated by placing an asterisk (*) in the first position of
the line, in which case the entire line is considered by the system to be a comment.
Comments don't need to be terminated by a period because they may not extend
across more than one line:

* This is the comment line

e Partial line comments are indicated by entering a double quote (") after a
statement. All text following the double quote is considered by the system to be a
comment. You need not terminate partial line comments by a period because they
may not extend across more than one line:

WRITE 'Hello'. "Here is the partial comment

Note: Commented code is not capitalized by the ABAP editor.

11

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

Suppressing Blanks

The NO-ZERO command follows the DATA statement. It suppresses all leading zeros of a
number field containing blanks. The output is usually easier for the users to read.

Example

REPORT Z_Test123 01.

DATA: W_NUR(10) TYPE N.
MOVE 50 TO W_NUR.
WRITE W_NUR NO-ZERO.

The above code produces the following output:

50

Note: Without NO-ZERO command, the output is: 0000000050

Blank Lines

The SKIP command helps in inserting blank lines on the page.

Example

The message command is as follows:

WRITE 'This is the 1st line'.
SKIP.
WRITE 'This is the 2™ line'.

The above message command produces the following output:

This is the 1st line

This is the 2nd line

We may use the SKIP command to insert multiple blank lines.

SKIP number_of_lines.

The output would be several blank lines defined by the number of lines. The SKIP command
can also position the cursor on a desired line on the page.

SKIP TO LINE line_number.

This command is used to dynamically move the cursor up and down the page. Usually, a
WRITE statement occurs after this command to put output on that desired line.

12

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

Inserting Lines

The ULINE command automatically inserts a horizontal line across the output. It's also
possible to control the position and length of the line. The syntax is pretty simple:

ULINE.

Example

The message command is as follows:

WRITE 'This is Underlined'.
ULINE.

The above code produces the following output:

This is Underlined (and a horizontal line below this).

Messages

The MESSAGE command displays messages defined by a message ID specified in
the REPORT statement at the beginning of the program. The message ID is a 2 character
code that defines which set of 1,000 messages the program will access when
the MESSAGE command is used.

The messages are numbered from 000 to 999. Associated with each number is a message
text up to a maximum of 80 characters. When message numberis called, the
corresponding text is displayed.

Following are the characters for use with the Message command:

Message Type Consequences

E Error The message appears and the application halts at its current
point. If the program is running in background mode, the job
is canceled and the message is recorded in the job log.

w Warning The message appears and the user must press Enter for the
application to continue. In background mode, the message is
recorded in the job log.

I Information | A pop-up window opens with the message text and the user
must press Enter to continue. In background mode, the
message is recorded in the job log.

A Abend This message class cancels the transaction that the user is
currently using.

13

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

S Success

This provides an informational message at the bottom of the
screen. The information displayed is positive in nature and it
is just meant for user feedback. The message does not
impede the program in any way.

X Abort

This message aborts the program and generates an ABAP
short dump.

Error messages are normally used to stop users from doing things they are not supposed
to do. Warning messages are generally used to remind the users of the consequences of
their actions. Information messages give the users useful information.

Example

When we create a message for message the ID AB, the MESSAGE command - MESSAGE
EO11 gives the following output:

EABO11 This report does not support sub-number summarization.

14

MPLYEAEYLEARMNING

'@j Mtutorialspoint

5. ABAP—Data Types

While programming in ABAP, we need to use a variety of variables to store various
information. Variables are nothing but reserved memory locations to store values. This
means that when you create a variable you reserve some space in memory. You may like
to store information of various data types like character, integer, floating point, etc. Based
on the data type of a variable, the operating system allocates memory and decides what
can be stored in the reserved memory.

Elementary Data Types

ABAP offers the programmer a rich assortment of fixed length as well as variable length
data types. Following table lists down ABAP elementary data types:

Type Keyword
Byte field X
Text field C

Integer I

Floating point F

Packed number P
Text string STRING

Some of the fields and numbers can be modified using one or more names as the following:

e byte
e numeric

e character-like

The following table shows the data type, how much memory it takes to store the value in
memory, and the minimum and maximum value that could be stored in such type of

variables.
Type Typical Length Typical Range

X 1 byte Any byte values (00 to FF)

C 1 character 1 to 65535

N (numeric text filed) 1 character 1 to 65535

D (character-like date) | 8 characters 8 characters

T (character-like time) | 6 characters 6 characters

I 4 bytes -2147483648 to 2147483647
2.2250738585072014E-308 to

F 8 bytes 1.7976931348623157E+308 positive
or negative

15

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

[-10~(2len -1) +1] to [+10~(2len -1) -
P 8 bytes
1] (where len = fixed length)
STRING Variable Any alphanumeric characters
XSTRING (byte string) Variable Any byte values (00 to FF)
Example

REPORT YR_SEP_12.

DATA text_line TYPE C LENGTH 40.
text_line = 'A Chapter on Data Types'.
Write text_line.

DATA text_string TYPE STRING.
text_string = 'A Program in ABAP'.
Write / text_string.

DATA d_date TYPE D.

d_date = SY-DATUM.

Write / d_date.

In this example, we have a character string of type C with a predefined length 40. STRING
is a data type that can be used for any character string of variable length (text strings).
Type STRING data objects should generally be used for character-like content where fixed
length is not important.

The above code produces the following output:

A Chapter on Data Types
A Program in ABAP
12092015

The DATE type is used for the storage of date information and can store eight digits as
shown above.

Complex and Reference Types

The complex types are classified into Structure types and Table types. In the structure
types, elementary types and structures (i.e. structure embedded in a structure) are
grouped together. You may consider only the grouping of elementary types. But you must
be aware of the availability of nesting of structures.

When the elementary types are grouped together, the data item can be accessed as a
grouped data item or the individual elementary type data items (structure fields) can be
accessed. The table types are better known as arrays in other programming languages.
Arrays can be simple or structure arrays. In ABAP, arrays are called internal tables and
they can be declared and operated upon in many ways when compared to other
programming languages. The following table shows the parameters according to which
internal tables are characterized.

16

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

Parameter Description

Line or row type Row of an internal table can be of elementary, complex or
reference type.

Key Specifies a field or a group of fields as a key of an internal table
that identifies the table rows. A key contains the fields of
elementary types.

Access method Describes how ABAP programs access individual table entries.

Reference types are used to refer to instances of classes, interfaces, and run-time data
items. The ABAP OOP run-time type services (RTTS) enables declaration of data items at
run-time.

17

MPLYEAEYLEARMNING

'@j Mtutorialspoint

6. ABAP —Variables

Variables are named data objects used to store values within the allotted memory area of
a program. As the name suggests, users can change the content of variables with the help
of ABAP statements. Each variable in ABAP has a specific type, which determines the size
and layout of the variable's memory; the range of values that can be stored within that
memory; and the set of operations that can be applied to the variable.

You must declare all variables before they can be used. The basic form of a variable
declaration is:

DATA <f> TYPE <type> VALUE <val>.

Here <f> specifies the name of a variable. The name of the variable can be up to 30
characters long. <type> specifies the type of variable. Any data type with fully specified
technical attributes is known as <type>. The <val> specifies the initial value of the of <f>
variable. In case you define an elementary fixed-length variable, the DATA statement
automatically populates the value of the variable with the type-specific initial value. Other
possible values for <val> can be a literal, constant, or an explicit clause, such as Is
INITIAL.

Following are valid examples of variable declarations.

DATA d1(2) TYPE C.
DATA d2 LIKE di.
DATA minimum_value TYPE I VALUE 1e.

In the above code snippet, d1 is a variable of C type, d2 is a variable of d1 type, and
minimum_value is a variable of ABAP integer type I.

This chapter will explain various variable types available in ABAP. There are three kinds of
variables in ABAP:

e Static Variables
e Reference Variables

e System Variables

Static Variables

e Static variables are declared in subroutines, function modules, and static methods.
e The lifetime is linked to the context of the declaration.
e With 'CLASS-DATA’ statement, you can declare variables within the classes.

e The ‘PARAMETERS' statement can be used to declare the elementary data objects
that are linked to input fields on a selection screen.

e You can also declare the internal tables that are linked to input fields on a selection
screen by using ‘SELECT-OPTIONS’ statement.

18

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Following are the conventions used while naming a variable:

e You cannot use special characters such as "t" and "," to name variables.
e The name of the predefined data objects can’t be changed.
e The name of the variable can’t be the same as any ABAP keyword or clause.

e The name of the variables must convey the meaning of the variable without the
need for further comments.

e Hyphens are reserved to represent the components of structures. Therefore, you
are supposed to avoid hyphens in variable names.

e The underscore character can be used to separate compound words.

This program shows how to declare a variable using the PARAMETERS statement:

REPORT ZTest123 01.
PARAMETERS: NAME(10) TYPE C,
CLASS TYPE I,

SCORE TYPE P DECIMALS 2,
CONNECT TYPE MARA-MATAR.

Here, NAME represents a parameter of 10 characters, CLASS specifies a parameter of
integer type with the default size in bytes, SCORE represents a packed type parameter
with values up to two decimal places, and CONNECT refers to the MARA-MATNF type of
ABAP Dictionary.

The above code produces the following output:

NAME
CLASS
SCORE
COMMNECT

Reference Variables

The syntax for declaring reference variables is:

DATA <ref> TYPE REF TO <type> VALUE IS INITIAL.

e REF TO addition declares a reference variable ref.
e The specification after REF TO specifies the static type of the reference variable.

e The static type restricts the set of objects to which <ref> can refer.

19

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

e The dynamic type of reference variable is the data type or class to which it currently
refers.

e The static type is always more general or the same as the dynamic type.

e The TYPE addition is used to create a bound reference type and as a start value,
and only IS INITIAL can be specified after the VALUE addition.

Example

CLASS C1 DEFINITION.

PUBLIC SECTION.

DATA B1 TYPE I VALUE 1.
ENDCLASS.

DATA: Oref TYPE REF TO C1 ,
Drefl LIKE REF TO Oref,
Dref2 TYPE REF TO I .
CREATE OBJECT Oref.

GET REFERENCE OF Oref INTO Drefl.
CREATE DATA Dref?2.

Dref2->* = Drefl->*->Bl.

e In the above code snippet, an object reference Oref and two data reference
variables Drefl and Dref2 are declared.

e Both data reference variables are fully typed and can be dereferenced using the
dereferencing operator ->* at operand positions.

System Variables

e ABAP system variables are accessible from all ABAP programs.

e These fields are actually filled by the run-time environment.

e The values in these fields indicate the state of the system at any given point of
time.

e You can find the complete list of system variables in the SYST table in SAP.
e Individual fields of the SYST structure can be accessed by using either "SYST-" or

n SY_ ll.

Example

REPORT Z_Test123_01.

WRITE:/'SY-ABCDE', SY-ABCDE,
/"'SY-DATUM', SY-DATUM,
/'SY-DBSYS', SY-DBSYS,
/'SY-HOST ', SY-HOST,
/'SY-LANGU', SY-LANGU,

20

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

/'SY-MANDT', SY-MANDT,
/'SY-OPSYS', SY-OPSYS,
/'SY-SAPRL', SY-SAPRL,
/'SY-SYSID', SY-SYSID,
/'SY-TCODE', SY-TCODE,
/'SY-UNAME', SY-UNAME,
/'SY-UZEIT', SY-UZEIT.

SAP ABAP

The above code produces the following output:

SY-ABCDE
SY-DATUM
SY-DBSYS
SY-HOST

SY-LANGU
SY-MANDT
SY-0PSYS
SY-SAPRL
SY-SYSID
SY-TCODE
SY-UNAME
SY-UZEIT

ABCDEFGHIJKLMNOPQRSTUVWXYZ
12.09.2015
ORACLE
sapserver
EN

800
Windows NT
700

DMO

SE38
SAPUSER
14:25:48

w Mtutorialspoint

B

MPLYEAEYLEARMNING

21

7. ABAP — Constants and Literals

Literals are unnamed data objects that you create within the source code of a
program. They are fully defined by their value. You can’t change the value of a literal.
Constants are named data objects created statically by using declarative statements. A
constant is declared by assigning a value to it that is stored in the program's memory
area. The value assigned to a constant can’t be changed during the execution of the
program. These fixed values can also be considered as literals. There are two types of
literals: numeric and character.

Numeric Literals

Number literals are sequences of digits which can have a prefixed sign. In number literals,
there are no decimal separators and no notation with mantissa and exponent.

Following are some examples of numeric literals:

183.
-97.
+326.

Character Literals

Character literals are sequences of alphanumeric characters in the source code of an ABAP
program enclosed in single quotation marks. Character literals enclosed in quotation marks
have the predefined ABAP type C and are described as text field literals. Literals enclosed
in “back quotes” have the ABAP type STRING and are described as string literals. The field
length is defined by the number of characters.

Note: In text field literals, trailing blanks are ignored, but in string literals they are taken
into account.

Following are some examples of character literals.

Text field literals

REPORT YR_SEP_12.
Write 'Tutorials Point'.
Write / 'ABAP Tutorial'.

String field literals

REPORT YR SEP 12.
Write "~Tutorials Point °.
Write / “ABAP Tutorial °

22

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

The output is same in both the above cases:

Tutorials Point

ABAP Tutorial

Note: When we try to change the value of the constant, a syntax or run-time error may
occur. Constants that you declare in the declaration part of a class or an interface belong
to the static attributes of that class or interface.

CONSTANTS Statement

We can declare the named data objects with the help of CONSTANTS statement.

Following is the syntax:

CONSTANTS <f> TYPE <type> VALUE <val>.

The CONSTANTS statement is similar to the DATA statement.

<f> specifies a name for the constant. TYPE <type> represents a constant named <f>,
which inherits the same technical attributes as the existing data type <type>. VALUE
<val> assigns an initial value to the declared constant name <f>.

Note: We should use the VALUE clause in the CONSTANTS statement. The clause ‘VALUE’
is used to assign an initial value to the constant during its declaration.

We have 3 types of constants such as elementary, complex and reference constants. The
following statement shows how to define constants by using the CONSTANTS statement:

REPORT YR SEP 12.
CONSTANTS PQR TYPE P DECIMALS 4 VALUE '1.2356°'.
Write: / 'The value of PQR is:', PQR.

The output is:

The value of PQR is: 1.2356

Here it refers to elementary data type and is known as elementary constant.

Following is an example for complex constants:

BEGIN OF EMPLOYEE,

Name(25) TYPE C VALUE 'Management Team',
Organization(40) TYPE C VALUE 'Tutorials Point Ltd',
Place(10) TYPE C VALUE 'India‘,

END OF EMPLOYEE.

In the above code snippet, EMPLOYEE is a complex constant that is composed of the Name,
Organization and Place fields.

23

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

The following statement declares a constant reference:

CONSTANTS null_pointer TYPE REF TO object VALUE IS INITIAL.

We can use the constant reference in comparisons or we may pass it on to procedures.

24

MPLYEAEYLEARMNING

w Mtutorialspoint

8. ABAP —CQOperators

ABAP provides a rich set of operators to manipulate variables. All ABAP operators are
classified into four categories:

e Arithmetic Operators
e Comparison Operators
e Bitwise Operators

e Character String Operators

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are
used in algebra. The following list describes arithmetic operators. Assume integer variable
A holds 20 and variable B holds 40.

Arithmetic Operator Description

+ (Addition) Adds values on either side of the
operator. Example: A + B will give 60.

- (Subtraction) Subtracts right hand operand from left
hand operand. Example: A - B will give
-20.
* (Multiplication) Multiplies values on either side of the

operator. Example: A * B will give 800.

/ (Division) Divides left hand operand by right hand
operand. Example: B / A will give 2.

MOD (Modulus) Divides left hand operand by right hand
operand and returns the remainder.
Example: B MOD A will give 0.

Example

REPORT YS SEP 08.

DATA: A TYPE I VALUE 150,
B TYPE I VALUE 50,
Result TYPE I.

25

@ tutorialspoint

EIMPLYEAEYLEARMING

Result = A / B.
WRITE / Result.

SAP ABAP

The above code produces the following output:

3

Comparison Operators

Let’s discuss the various types of comparison operators for different operands.

Comparison Operator

Description

= (equality test).
Alternate form is EQ.

Checks if the values of two operands are equal or
not, if yes then condition becomes true.
Example: (A = B) is not true.

<> (Inequality test).
Alternate form is NE.

Checks if the values of two operands are equal or
not. If the values are not equal then the condition
becomes true. Example: (A <> B) is true.

> (Greater than test).
Alternate form is GT.

Checks if the value of left operand is greater than
the value of right operand. If yes then condition
becomes true. Example: (A > B) is not true.

< (Less than test).
Alternate form is LT.

Checks if the value of left operand is less than the
value of right operand. If yes, then condition
becomes true. Example: (A < B) is true.

>= (Greater than or
Alternate form is GE.

equals)

Checks if the value of left operand is greater than
or equal to the value of right Operand. If yes, then
condition becomes true. Example: (A >= B) is not
true.

<= (Less than or equals test).
Alternate form is LE.

Checks if the value of left operand is less than or
equal to the value of right operand. If yes, then
condition becomes true. Example: (A <= B) is
true.

al BETWEEN a2 AND a3
(Interval test)

Checks whether al lies in between a2 and a3
(inclusive). If yes, then the condition becomes true.
Example: (A BETWEEN B AND C) is true.

IS INITIAL

The condition becomes true if the contents of the
variable have not changed and it has been
automatically assigned its initial value.

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

26

SAP ABAP

Example: (A IS INITIAL) is not true

IS NOT INITIAL

The condition becomes true if the contents of the
variable have changed.
INITIAL) is true.

(A IS NOT

Note: If the data type or length of the variables does not match then automatic conversion
is performed. Automatic type adjustment is performed for either one or both of the values
while comparing two values of different data types. The conversion type is decided by the

data type and the preference order of the data type.

Following is the order of preference:

e If one field is of type I, then the other is converted to type I.

e If one field is of type P, then the other is converted to type P.

e If one field is of type D, then the other is converted to type D. But C and N types
are not converted and they are compared directly. Similar is the case with type T.

o If one field is of type N and the other is of type C or X, both the fields are converted

to type P.

e If one field is of type C and the other is of type X, the X type is converted to type

C.

Example 1

REPORT YS SEP 08.
DATA: A TYPE I VALUE 115,
B TYPE I VALUE 119.
IF A LT B.
WRITE: / 'A is less than B'.
ENDIF.

The above code produces the following output:

A is less than B

Example 2

REPORT YS_SEP_08.

DATA: A TYPE I.
IF A IS INITIAL.
WRITE: / 'A is assigned'.
ENDIF.

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

27

The above code produces the following output:

SAP ABAP

A is assigned.

Bitwise Operators

ABAP also provides a series of bitwise logical operators that can be used to build Boolean
algebraic expressions. The bitwise operators can be combined in complex expressions

using parentheses and so on.

Bitwise Operator Description

Unary operator that flips all the bits in a hexadecimal

number to the opposite value. For instance, applying this
BIT-NOT operator to a hexadecimal number having the bit level

value 10101010 (e.g. 'AA") would give 01010101.

This binary operator compares each field bit by bit using
BIT-AND the Boolean AND operator.

Binary operator that compares each field bit by bit using
BIT-XOR the Boolean XOR (exclusive OR) operator.

Binary operator that compares each field bit by bit using
BIT-OR the Boolean OR operator.

For example, following is the truth table that shows the values generated when applying
the Boolean AND, OR, or XOR operators against the two bit values contained in field A and

field B.
Field A Field B AND OR XOR
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

28

Character String Operators

SAP ABAP

Following is a list of character string operators:

Character String Operator

Description

CO (Contains Only)

Checks whether A is solely composed of the
characters in B.

CN (Not Contains ONLY)

Checks whether A contains characters that
are not in B.

CA (Contains ANY)

Checks whether A contains at least one
character of B.

NA (NOT Contains Any)

Checks whether A does not contain any
character of B.

CS (Contains a String)

Checks whether A contains the character
string B.

NS (NOT Contains a String)

Checks whether A does not contain the
character string B.

CP (Contains a Pattern)

It checks whether A contains the pattern in
B.

NP (NOT Contains a Pattern)

It checks whether A does not contain the
pattern in B.

Example

REPORT YS SEP 08.

DATA: P(1@) TYPE C VALUE 'APPLE',
Q(18) TYPE C VALUE 'CHAIR'.
IF P CA Q.
WRITE: /
ENDIF.

'P contains at least one character of Q'.

The above code produces the following output:

P contains at least one character of Q.

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

29

9. ABAP —Loop Control

There may be a situation when you need to execute a block of code several number of
times. In general, statements are executed sequentially: The first statement in a function
is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths. A loop statement allows us to execute a statement or group of
statements multiple times and following is the general form of a loop statement in most
of the programming languages.

Conditional Code

If condition
is true

If condition
is false

ABAP programming language provides the following types of loop to handle looping
requirements.

Loop Type Description

Repeats a statement or group of statements when a given
WHILE loop condition is true. It tests the condition before executing the
loop body.

The DO statement is useful for repeating particular task a
DO loop specific number of times.

30

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

You may use one or more loops inside any another WHILE
Nested loop or DO loop.

Loop Control Statements

Loop control statements change execution from its normal sequence. ABAP includes
control statements that allow loops to be ended prematurely. It supports the following
control statements.

Control Statement Description

CONTINUE Causes the loop to skip the remainder of its body and starts
the next loop pass.
If the condition is false, then the remaining statements after

CHECK the CHECK are just ignored and the system starts the next
loop pass.
Terminates the loop entirely and transfers execution to the
EXIT !) .

statement immediately following the loop.

31

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

10. ABAP—While Loop

A WHILE loop statement repeatedly executes a target statement as long as a given
condition is true.

The general format for the WHILE command is as follows:

WHILE <logical expression>

<statement block>.

ENDWHILE.

The statement block may be a single statement or a block of statements.

The WHILE loop executes the statements enclosed by the WHILE and ENDWHILE
commands until the logical expression becomes false.

Flow Diagram

WHILE <logical expression>.
<statement block>

ENDWHILE.

If expression
is true

y
If expression
is false

32

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

The WHILE command is preferable while considering the performance of programs. The
loop continues until the logical statement is found to be untrue and exits the loop if a false
statement is found, and the first statement after the WHILE loop is executed.

Example

REPORT YS_SEP_15.
DATA: a type 1i.
a = 0.
WHILE a <> 8.
Write: / 'This is the line:', a.
a=a+1.

ENDWHILE.

The above code produces the following output:

This is the 1line:
This is the 1line:
This is the 1line:

This is the 1line:

A wWwNN PO

This is the 1line:

v

This is the 1line:

(o))

This is the 1line:

This is the line: 7

33

MPLYEAEYLEARMNING

'@j Mtutorialspoint

11. ABAP-Do Loop

Unconditional loops repeatedly execute several statements without specifying any
condition. The DO statement implements unconditional loops by executing a set of
statement blocks several times unconditionally.

Syntax

The general format for the DO statement is as follows:

DO [n TIMES].

<statement block>.

ENDDO.

‘Times’ imposes a restriction on the number of loop passes, which is represented by ‘n’.
The value of *n’ should not be negative or zero. If it is zero or negative, the statements in
the loop are not executed.

Flow Diagram

DO [n Times].
<statement block>
ENDDO.

code block

If condition
is true

condition

If condition
is false

34

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Example

Report YH SEP 15.
Do 15 TIMES.
Write: / 'Hello'.

ENDDO.

The above code produces the following output:

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

In this example, the system understands that the loop is to be processed 15 times.

35

MPLYEAEYLEARMNING

w Mtutorialspoint

12. ABAP—Nested Loops

The DO and WHILE statements can be tested as well as combined with other loop forms.
Each nested loop will have it's own SY-INDEX created and monitored by the system.

Syntax

The syntax for nested DO loop is:

DO [n TIMES].

<statement block n>.
DO [m TIMES].
<statement block m>.
ENDDO.

ENDDO.

Example

REPORT YS_SEP_15.
Data: al type I, bl type I.

al

1}
(O]

bl = @.

Do 2 times.

al al + 1.

Write: /'Outer', al.
Do 10 times.
bl = bl + 1.
Write: /'Inner', bil.

ENDDo.
ENDDo.

36

w tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

The above code produces the following output:

Outer 1
Inner 1
Inner 2
Inner 3
Inner 4
Inner 5
Inner 6
Inner 7
Inner 8
Inner 9
Inner 10
Outer 2
Inner 11
Inner 12
Inner 13
Inner 14
Inner 15
Inner 16
Inner 17
Inner 18
Inner 19
Inner 20

In this example, the outer DO loop is processed twice and the inner DO loop is processed
10 times, each time the outer DO loop is processed. So in this case, the inner loop is
processed 20 times.

37

'@j Mtutorialspoint

EIMPLYEAEYLEARMNINEG

13. ABAP—Continue Statement

CONTINUE statement is used in a statement block of the loop to terminate a single loop
pass immediately and unconditionally. As soon as the CONTINUE statement is executed,
the execution of the remaining statements in the current processing block is stopped and
the next loop pass is processed.

The syntax for continue statement is:

CONTINUE.

Block Diagram

conditional
code

If condition
is true

condition

If condition
is false

Example

Report YH SEP 15.
DO 5 TIMES.
IF SY-INDEX = 3.

CONTINUE.

ENDIF.
38

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Write / SY-INDEX.

ENDDO.

The above code produces the following output:

i b~ N

The CONTINUE statement ignores all the statements in the current statement block and
proceeds with the next loop pass.

39

w Mtutorialspoint

EIMPLYEAEYLEARMNINEG

14. ABAP —Check Statement

CHECK statement terminates a loop pass based on a condition. If the condition in the
CHECK statement is evaluated to false then all the remaining statements in the statement
block after the CHECK statement are ignored, and the next loop pass starts. The condition
in the CHECK statement can be any logical expression.

The syntax for check statement is:

CHECK.

Example

Report YH SEP 15.

DO 5 TIMES.

CHECK SY-INDEX BETWEEN 3 AND 4.
Write / SY-INDEX.

ENDDO.

The above code produces the following output:

40

w tutorialspoint

EIMPLYEAEYLEARMING

15. ABAP —Exit Statement

EXIT statement is used to terminate an entire loop unconditionally and immediately. As
soon as the EXIT statement is executed, the loop is terminated and the statements
following the loop are processed.

The syntax for exit statement is:

EXIT.

Note: If the EXIT statement is used in a nested loop, only the current loop is executed
after the EXIT statement is processed.

Block Diagram

conditional
code

If condition
is true

condition

If condition

41

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Example

Report YH SEP 15.
DO 5 TIMES.

IF SY-INDEX = 3.
EXIT.

ENDIF.

Write / SY-INDEX.

ENDDO.

The above code produces the following output:

42

MPLYEAEYLEARMNING

w Mtutorialspoint

16. ABAP —Decisions

Decision making structures have one or more conditions to be evaluated or tested by the
program, along with a statement or statements that are to be executed, if the condition is
determined to be true, and optionally, other statements to be executed, if the condition is
determined to be false.

Following is the general form of a typical decision-making structure found in most of the
programming languages:

If condition

is false

If condition
is true

conditional V

code

®

ABAP programming language provides the following types of decision-making statements.

Statement Description

IF Statement An IF statement consists of a logical expression
followed by one or more statements.

IF....ELSE Statement An IF statement can be followed by an optional ELSE
statement that executes when the expression is false.

Nested IF Statement You may use one IF or ELSEIF statement inside
another IF or ELSEIF statement.

CASE Control Statement CASE statement is used when we need to compare two
or more fields or variables.

43

@ tutorialspoint

EIMPLYEAEYLEARMING

17. ABAP - If Statement

‘IF’ is a control statement used to specify one or more conditions. You may also nest the
IF control structures in an ABAP program.

The following syntax is used for the IF statement.

IF<condition_1>.

<Statements...>.

ENDIF.

If the expression evaluates to true, then the IF block of code will be executed.

Flow Diagram

If condition
is true

If condition B
is false conditional code

Example

Report YH_SEP_15.

Data Title_ 1(20) TYPE C.

44

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Title 1 = 'Tutorials'.
IF Title_1 = 'Tutorials'.
write 'This is IF statement'.

ENDIF.

The above code produces the following output:

This is IF statement.

45

w Mtutorialspoint

EIMPLYEAESEYLEARNING

18. ABAP-—If....Else Statement

In case of IF....ELSE statements, if the expression evaluates to true then the IF block of
code will be executed. Otherwise, ELSE block of code will be executed.

The following syntax is used for IF....ELSE statement.

IF<condition_1>.

<statement block 1>.

ELSE.

<statement block 2>.

ENDIF.

Flow Diagram

If condition

is true
condition

else code

Example

Report YH SEP 15.
Data Title 1(20) TYPE C.

Title 1 = 'Tutorials'.

46

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

IF Title 1 = 'Tutorial'.

write 'This is IF Statement'.
ELSE.

write 'This is ELSE Statement'.

ENDIF.

The above code produces the following output:

This is ELSE Statement.

IF....ELSEIF....ELSE Statement

Sometimes nesting of the IF statements can make the code difficult to understand. In such
cases, the ELSEIF statement is used to avoid nesting of the IF statement.

When using IF, ELSEIF and ELSE statements there are a few points to consider:

e An IF statement can have zero or one ELSE statement and it must come after any
ELSEIF statement.

¢ An IF statement can have zero to many ELSEIF statements and they must come
before the ELSE statement.

o Ifan ELSEIF statement succeeds, none of the remaining ELSEIF statements or ELSE
statement will be tested.

The following syntax is used for the IF....ELSEIF....ELSE statement.

IF<condition_1>.

<statement block 1>.

ELSEIF<condition_2>.

<statement block 2>.

ELSEIF<condition_3>.

<statement block 3>.

4/

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

ELSE.

<statement block>.

ENDIF.

In the above syntax, the execution of the processing block is based on the result of one
or more logical conditions associated with the processing block. Here:

e condition_1 of IF statement represents a logical condition that evaluates a true or
false condition.

e condition_2 shows the second condition specified in the ELSEIF statement, which
is executed when the IF statement condition turns out to be false.

e ENDIF denotes the end of the IF statement block.

Example

Report YH_SEP_15.
Data Result TYPE I VALUE 65.

IF Result < 0.

Write / 'Result is less than zero'.

ELSEIF Result < 70.

Write / 'Result is less than seventy'.

ELSE.

Write / 'Result is greater than seventy'.

ENDIF.

The above code produces the following output:

Result is less than seventy.

48

MPLYEAEYLEARMNING

'@j Mtutorialspoint

19. ABAP— Nested If Statement

It is always legal to nest IF....ELSE statements, which means you can use one IF or ELSEIF
statement inside another IF or ELSEIF statement.

The syntax for a nested IF....ELSE statement is as follows:

IF<condition_1>.

<statement block>.

IF<condition_2>.

<statement block>.

ELSE.

<statement block>.

ENDIF.

ELSE <statement block>.

ENDIF.

Example

Report YH_SEP_15.

Data: Title_1(10) TYPE C,
Title 2(15) TYPE C,
Title_3(10) TYPE C.

Title_1 = 'ABAP'.
Title_2 = 'Programming’.
Title 3 = 'Tutorial'.

IF Title_1 = 'ABAP'.

IF Title_2 = 'Programming’.
IF Title_3 = 'Tutorial’.

Write 'Yes, It’s Correct'.

49

w tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

ELSE.

Write 'Sorry, It’s Wrong'.

ENDIF.

ENDIF.

ENDIF.

The above code produces the following output:

Yes, It’s Correct.

MPLYEAEYLEARMNING

w Mtutorialspoint

50

20. ABAP - Case Control Statement

The CASE control statement is used when you need to compare two or more fields.

The syntax for CASE control statement is as follows:

CASE <field>.

WHEN <abc>.

<statement block>.

WHEN <def>.

<statement block>.

WHEN <pqr>.

<statement block>.

WHEN <xyz>.

<statement block>.

WHEN OTHERS.

<statement block>.

ENDCASE.

The following rules apply to a CASE statement:
¢ No logical expressions can be used for the <field> field.
e The field strings used in the CASE statement are treated as type C variables.

e The statement block following a WHEN clause is executed if the content of the fields
shown in the <field> is similar to one of the fields <abc>, <def>, <ghi> up to
<Xyz>.

51

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

e After executing all the conditions specified in the WHEN statement, the program

continues to process the remaining statements after the ENDCASE statement.

e The WHEN OTHERS clause is executed in a program when the value of the <field>
does not match with any value specified in the <abc> up to <xyz> fields of the

WHEN clause.

e If the WHEN OTHERS clause is omitted and the value of the <field> does not match
with any value specified in the <abc> up to <xyz> fields of the WHEN clause, the
program continues to process the remaining statements after the ENDCASE

statement.

Flow Diagram

field

when abc
when pqr

when xyz

Y/
(

NN

default

 EE—

—— code block 1

e N cOde block 2

code block 3

(- e code block N

Example

Report YH_SEP_15.
Data: Title_1(10) TYPE C,
Title_2(15) TYPE C.

Title_1 = 'ABAP'.

MPLYEAEYLEARNING

w Mtutorialspoint

52

SAP ABAP

Title_2 = 'Programming’.
CASE Title_2.

WHEN 'ABAP'.

Write 'This is not the title’'.

WHEN 'Tutorials'.

Write 'This is not the title"'.
WHEN 'Limited'.
Write 'This is not the title'.

WHEN 'Programming’.

Write 'Yes, this is the title’'.

WHEN OTHERS.

Write 'Sorry, Mismatch'.

ENDCASE.

The above code produces the following output:

Yes, this is the title.

53

w Mtutorialspoint

EIMPLYEAEYLEARMNINEG

21. ABAP-—Strings

Strings, which are widely used in ABAP programming, are a sequence of characters.

We use data type C variables for holding alphanumeric characters, with a minimum of 1
character and a maximum of 65,535 characters. By default, these are aligned to the left.

Creating Strings

The following declaration and initialization creates a string consisting of the word 'Hello'.
The size of the string is exactly the number of characters in the word 'Hello'.

Data my_Char(5) VALUE 'Hello'.

Following program is an example of creating strings.

REPORT YT_SEP_15.
DATA my_Char(5) VALUE 'Hello'.

Write my_Char.

The above code produces the following output:

Hello

String Length

In order to find the length of character strings, we can use STRLEN statement. The
STRLEN () function returns the number of characters contained in the string.

Example

REPORT YT_SEP_15.
DATA: title 1(10) VALUE 'Tutorials',
length_1 TYPE I.
length_1 = STRLEN(title_ 1).
Write: / 'The Length of the Title is:', length_1.

The above code produces the following output:

The Length of the Title is: 9

54

@ tutorialspoint

EIMPLYEAEYLEARMING

ABAP supports a wide range of statements that manipulate strings.

SAP ABAP

Statement Purpose
CONCATENATE Two strings are joined to form a third string.
CONDENSE This statement deletes the space characters.
STRLEN Used to find the length of a field.
REPLACE Used to make replacements in characters.
SEARCH To run searches in character strings.
SHIFT Used to move the contents of a string left or right.
SPLIT Used to split the contents of a field into two or more fields.

The following example makes use of some of the above mentioned statements:

Example

REPORT YT_SEP_15.
DATA: title 1(10) VALUE 'Tutorials',
title 2(10) VALUE 'Point’,
spaced_title(30) VALUE 'Tutorials Point Limited’,
sep,
dest1(30),
dest2(30).
CONCATENATE title_ 1 title_2 INTO destl.
Write: / 'Concatenation:', destl.
CONCATENATE title_1 title_2 INTO dest2 SEPARATED BY sep.
Write: / 'Concatenation with Space:', dest2.
CONDENSE spaced_title.

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

55

SAP ABAP

Write: / 'Condense with Gaps:', spaced_title.
CONDENSE spaced_title NO-GAPS.
Write: / 'Condense with No Gaps:', spaced_title.

The above code produces the following output:

Concatenation: TutorialsPoint
Concatenation with Space: Tutorials Point
Condense with Gaps: Tutorials Point Limited

Condense with No Gaps: TutorialsPointLimited

Note:

¢ In case of Concatenation, the ‘sep’ inserts a space in between the fields.

e The CONDENSE statement removes blank spaces between the fields, but leaving
only 1 character’s space.

¢ 'NO-GAPS’ is an optional addition to the CONDENSE statement that removes all
spaces.

56

MPLYEAEYLEARMNING

'@j Mtutorialspoint

22. ABAP-Date and Time

ABAP implicitly references the Gregorian calendar, valid across most of the world. We can
convert the output to country specific calendars. A date is a time specified to a precise
day, week or month with respect to a calendar. A time is specified to a precise second or
minute with respect to a day. ABAP always saves time in 24-hour format. The output can
have a country specific format. Dates and time are usually interpreted as local dates that
are valid in the current time zone.

ABAP provides two built-in types to work with dates and time:

e D data type
e T data type

Following is the basic format:

DATA: date TYPE D,
time TYPE T.

DATA:year TYPE I,

month TYPE I,

day TYPE I,

hour TYPE I,

minute TYPE I,

second TYPE I.

Both of these types are fixed-length character types that have the form YYYYMMDD and
HHMMSS, respectively.

Timestamps

In addition to these built-in types, the other two types TIMESTAMP and TIMESTAMPL
are being used in many standard application tables to store a timestamp in the UTC format.
Following table shows the basic date and time types available in ABAP.

Data Type Description

A built-in fixed-length date type of the form YYYYMMDD. For
D example, the value 20100913 represents the date
September 13, 2010.

A built-in fixed-length time type of the form HHMMSS. For
T example, the value 102305 represents time 10:23:05 AM.

57

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

TIMESTAMP This type is used to represent short timestamps in
(Type P - YYYYMMDDhhmmss form. For instance, the value
20100913102305 represents the date September 13, 2010

Length 8 at 10:23:05 AM.
No decimals)

TIMESTAMPL TIMESTAMPL represents long timestamps in
(Type P - YYYYMMDDhhmmss,mmmuuun form. Here the additional
Length 11 digits ‘mmmuuun’ represent the fractions of a second.

Decimals 7)

Current Data and Time

The following code snippets retrieve the current system date and time.

REPORT YR_SEP_15.

DATA: date_1 TYPE D.

date_1 = SY-DATUM.

Write: / 'Present Date is:', date_1 DD/MM/YYYY.
date_1 = date_1 + 06.

Write: / 'Date after 6 Days is:', date_1 DD/MM/YYYY.

The above code produces the following output:

Present Date is: 21.09.2015
Date after 6 Days is: 27.09.2015

The variable date_1 is assigned the value of the current system date SY-DATUM. Next, we
increment the date value by 6. In terms of a date calculation in ABAP, this implies that
we're increasing the day component of the date object by 6 days. The ABAP runtime
environment is smart enough to roll over the date value whenever it reaches the end of a
month.

Time calculations work similar to date calculations. The following code increments the
current system time by 75 seconds using basic time arithmetic.

REPORT YR_SEP_15.

DATA: time_1 TYPE T.

time_1 = SY-UZEIT.

Write /(60) time_1 USING EDIT MASK

'Now the Time is: '

time_1 = time_1 + 75.

Write /(60) time_1 USING EDIT MASK

'A Minute and a Quarter from Now, it is: _ :

58

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

The above code produces the following output:

Now the Time is 11:45:05
A Minute and a Quarter from Now, it is: 11:46:20

Working with Timestamps

You can retrieve the current system time and store it in a timestamp variable using
GET TIME STAMP as shown in the following code. The GET TIME STAMP statement stores
the timestamp in a long-hand or a short-hand format according to the type of the
timestamp data object used. Timestamp value is encoded using the UTC standard.

REPORT YR SEP 12.
DATA: stamp 1 TYPE TIMESTAMP,

stamp 2 TYPE TIMESTAMPL.

GET TIME STAMP FIELD stamp 1.

Write: / 'The short time stamp is:', stamp 1
TIME ZONE SY-ZONLO.

GET TIME STAMP FIELD stamp 2.

Write: / 'The long time stamp is:', stamp 2
TIME ZONE SY-ZONLO.

The above code produces the following output:

The short time stamp is: 18.09.2015 11:19:40
The long time stamp is: 18.09.2015 11:19:40,9370000

In the above example, we are displaying the timestamp using the TIME ZONE addition of
the WRITE statement. This addition formats the output of the timestamp according to the
rules for the time zone specified. The system field SY-ZONLO is used to display the local
time zone configured in the user’s preferences.

59

MPLYEAEYLEARMNING

'@j Mtutorialspoint

23. ABAP-Formatting Data

ABAP offers various types of formatting options to format the output of programs. For
example, you can create a list that includes various items in different colors or formatting
styles.

The WRITE statement is a formatting statement used to display data on a screen. There
are different formatting options for the WRITE statement. The syntax of the WRITE
statement is:

WRITE <format> <f> <options>.

In this syntax, <format> represents the output format specification, which can be a
forward slash (/) that indicates the display of the output starting from a new line. In
addition to the forward slash, the format specification includes a column number and
column length. For example, the WRITE/04 (6) statement shows that a new line begins
with column 4 and the column length is 6, whereas the WRITE 20 statement shows the
current line with column 20. The parameter <f> represents a data variable or numbered
text.

The following table describes various clauses used for formatting:

Clause Description
LEFT-JUSTIFIED Specifies that the output is left-justified.
CENTERED Denotes that the output is centered.
RIGHT-JUSTIFIED Specifies that the output is right-justified.
UNDER <g> The output starts directly under the field <g>.
NO-GAP Specifies that the blank after field <f> is rejected.
Denotes the specification of the format template <m>.
Using No EDIT Mask: This specifies that the format
USING EDIT MASK <m> template specified in the ABAP Dictionary is
deactivated.
NO-ZERO If a field contains only zeroes, then they are replaced
by blanks.

60

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Following are the formatting options for Numeric Type fields:

Clause Description

NO-SIGN Specifies that no leading sign is displayed on the screen.

Specifies that in type F (the floating point fields), the

EXPONENT <e> exponent is defined in <e>.

The type P fields (packed numeric data types) are first
ROUND <r> multiplied by 10**(-r) and then rounded off to an integer
value.

Denotes that the formatting is done according to the
CURRENCY <c> currency <c> value that is stored in the TCURX database
table.

Specifies that the number of decimal places is fixed
UNIT <u> according to the <u> unit as specified in the TO06
database table for type P.

Specifies that the number of digits <d> must be

DECIMALS <d> displayed after the decimal point.

For instance, the following table shows different formatting options for the date fields:

Formatting Option Example
DD/MM/YY 13/01/15
MM/DD/YY 01/13/15

DD/MM/YYYY 13/01/2015
MM/DD/YYYY 01/13/2015
DDMMYY 130115
MMDDYY 011315
YYMMDD 150113

Here, DD stands for the date in two figures, MM stands for the month in two figures, YY
stands for the year in two figures, and YYYY stands for the year in four figures.

61

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

Let's take a look at an example of ABAP code that implements some of the above

formatting options:

REPORT ZTest123_01.

DATA: n(9) TYPE C VALUE 'Tutorials’,
m(5) TYPE C VALUE 'Point'.

WRITE: n, m.

WRITE: / n,

/ m UNDER n.

WRITE: / n NO-GAP, m.

DATA time TYPE T VALUE '112538'.
WRITE: / time,

/(8) time Using EDIT MASK ' : : ",

The above code produces the following output:

Tutorials Point
Tutorials

Point
TutorialsPoint
112538

11:25:38

w Mtutorialspoint

EIMPLYEAEYLEARNING

62

24. ABAP — Exception Handling

An exception is a problem that arises during the execution of a program. When an
exception occurs the normal flow of the program is disrupted and the program application
terminates abnormally, which is not recommended, therefore these exceptions are to be
handled.

Exceptions provide a way to transfer control from one part of a program to another. ABAP
exception handling is built upon three keywords: RAISE, TRY, CATCH and CLEANUP.
Assuming a block will raise an exception, a method catches an exception using a
combination of the TRY and CATCH keywords. A TRY - CATCH block is placed around the
code that might generate an exception. Following is the syntax for using TRY - CATCH:

TRY.

Try Block <Code that raises an exception>

CATCH

Catch Block <exception handler M>

CATCH

Catch Block <exception handler R>

CLEANUP.

Cleanup block <to restore consistent state>

ENDTRY.

RAISE: Exceptions are raised to indicate that some exceptional situation has occurred.
Usually, an exception handler tries to repair the error or find an alternative solution.

TRY: The TRY block contains the application coding whose exceptions are to be handled.
This statement block is processed sequentially. It can contain further control structures
and calls of procedures or other ABAP programs. It is followed by one or more catch blocks.

CATCH: A program catches an exception with an exception handler at the place in a
program where you want to handle the problem. The CATCH keyword indicates the
catching of an exception.

CLEANUP: The statements of the CLEANUP block are executed whenever an exception
occurs in a TRY block that is not caught by the handler of the same TRY - ENDTRY
construct. Within the CLEANUP clause, the system can restore an object to a consistent
state or release external resources. That is, cleanup work can be executed for the context
of the TRY block.

63

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Raising Exceptions

Exceptions can be raised at any point in a method, a function module, a subroutine, and
so on. There are two ways an exception can be raised:

e Exceptions raised by ABAP runtime system.
For instance Y = 1 / 0. This will result in a run time error of type
CX_SY_ZERODIVIDE.

e Exceptions raised by programmer.
Raise and create an exception object simultaneously. Raise an exception with an
exception object that already exists in the first scenario. The syntax is: RAISE
EXCEPTION exep.

Catching Exceptions

Handlers are used to catch exceptions.

Let’s take a look at a code snippet:

DATA: result TYPE P LENGTH 8 DECIMALS 2,
exref TYPE REF TO CX_ROOT,

msgtxt TYPE STRING.

PARAMETERS: Numl TYPE I, Num2 TYPE I.

TRY.

result = Numl / Num2.

CATCH CX_SY_ZERODIVIDE INTO exref.

msgtxt = exref->GET_TEXT().

CATCH CX_SY_CONVERSION_NO_NUMBER INTO exref.
msgtxt = exref->GET_TEXT().

In the above code snippet, we are trying to divide Num1l by Num2 to get the result in a
float type variable.

Two types of exceptions could be generated.

¢ Number conversion error.

e Divide by zero exception. Handlers catch CX_SY_CONVERSION_NO_NUMBER
exception and also the CX_SY_ZERODIVIDE exception. Here the GET_TEXT()
method of the exception class is used to get the description of the exception.

64

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

Attributes of Exceptions

Here are the five attributes and methods of exceptions:

Attribute Description

Textid Used to define different texts for exceptions and also
affects the result of the method get_text.

Previous This attribute can store the original exception that allows
you to build a chain of exceptions.

get_text This returns the textual representation as a string as per
- the system language of the exception.

get_longtext This returns the long variant of the textual representation
- of the exception as a string.

Gives the program name and line number reached where
get_source_position the exception was raised.

Example

REPORT ZExceptionsDemo.

PARAMETERS Num_1 TYPE I.

DATA res_1 TYPE P DECIMALS 2.

DATA orf_1 TYPE REF TO CX_ROOT.

DATA txt_1 TYPE STRING.

start-of-selection.

Write: / 'Square Root and Division with:', Num_1.
write: /.

TRY.

IF ABS(Num_1) > 150.

RAISE EXCEPTION TYPE CX_DEMO_ABS_TOO_LARGE.
ENDIF.

TRY.

res_1 = SQRT(Num_1).

Write: / 'Result of square root:', res_1.
res 1 =1/ Num_1.

Write: / 'Result of division:', res_1.
CATCH CX_SY_ZERODIVIDE INTO orf_1.

txt_1 = orf_1->GET_TEXT().

CLEANUP.

CLEAR res_1.

ENDTRY.

65

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

CATCH CX_SY_ARITHMETIC_ERROR INTO orf_ 1.
txt_1 = orf_1->GET_TEXT().

CATCH CX_ROOT INTO orf 1.

txt_1 = orf_1->GET_TEXT().

ENDTRY.

IF NOT txt_1 IS INITIAL.

Write / txt_1.

ENDIF.

Write: / 'Final Result is:', res_1.

In this example, if the number is greater than 150, the exception
CX_DEMO_ABS_TOO_LARGE is raised. The above code produces the following output for
the number 160.

Square Root and Division with: 160
The absolute value of number is too high

Final Result is: ©.00

66

'@j Mtutorialspoint

EIMPLYEAEYLEARMNINEG

25. ABAP-Dictionary

As you are aware, SQL can be divided into two parts:

e DML (Data Manipulation Language)
e DDL (Data Definition Language)

DML part consists of query and update commands such as SELECT, INSERT, UPDATE,
DELETE, etc. and ABAP programs handle the DML part of SQL. DDL part consists of
commands such as CREATE TABLE, CREATE INDEX, DROP TABLE, ALTER TABLE, etc. and
ABAP Dictionary handles the DDL part of SQL.

ABAP Dictionary

Type definitions DB objects

Structure Table
&

J DB table
i

Data elements Table type

Services
Poss. values

SCreen

ABAP Dictionary can be viewed as metadata (i.e. data about data) that resides in the SAP
database along with the metadata maintained by the database. The Dictionary is used to
create and manage data definitions and to create Tables, Data Elements, Domains, Views
and Types.

67

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Basic Types in ABAP Dictionary

The basic types in ABAP Dictionary are as follows:

o Data elements describe an elementary type by defining the data type, length and
possibly decimal places.

e Structures with components that can have any type.

e Table types describe the structure of an internal table.

Various objects in the Dictionary environment can be referenced in ABAP programs. The
Dictionary is known as the global area. The objects in the Dictionary are global to all ABAP
programs and the data in ABAP programs can be declared by reference to these Dictionary
global objects.

Database Objects in ABAP Dictionary

Objects are automatically
created in the DB and
adjusted to changes

Table 1 Table 2

ABAP Dictionary

Database

The Dictionary supports the definition of user-defined types and these types are used in
ABAP programs. They also define the structure of database objects such as tables, views
and indexes. These objects are created automatically in the underlying database in their
Dictionary definitions when the objects are activated. The Dictionary also provides editing
tools like Search Help and locking tool like Lock Objects.

68

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Dictionary Tasks

ABAP Dictionary achieves the following:

e Enforces data integrity.
e Manages data definitions without redundancy.
o Integrates tightly with rest of the ABAP development workbench.

Example

Any complex user-defined type can be built from the 3 basic types in the Dictionary.
Customer data is stored in a structure ‘Customer’ with the components Name, Address
and Telephone as depicted in the following image. Name is also a structure with
components, First name and Last name. Both of these components are elementary
because their type is defined by a data element.

Customer

Name ‘ Address |Telephune‘

v
First name‘ Last nhame | Town | Address ‘ Numbers

ZIP ‘Tuwn name Street ‘Hnuse no.

The type of component Address is defined by a structure whose components are also
structures, and the Telephone component is defined by a table type because a customer
can have more than one telephone number. Types are used in ABAP programs and also to
define the types of interface parameters of function modules.

69

MPLYEAEYLEARMNING

w Mtutorialspoint

26. ABAP—-Domains

The three basic objects for defining data in the ABAP Dictionary are Domains, Data
elements and Tables. The domain is used for the technical definition of a table field such
as field type and length, and the data element is used for the semantic definition (short
description). A data element describes the meaning of a domain in a certain business
context. It contains primarily the field help and the field labels in the screen.

The domain is assigned to the data element, which in turn is assigned to the table fields
or structure fields. For instance, the MATNR domain (CHAR material number) is assigned
to data elements such as MATNR_N, MATNN and MATNR_D, and these are assigned to
many table fields and structure fields.

Creating Domains

Before you create a new domain, check whether any existing domains have the same
technical specifications required in your table field. If so, we are supposed to use that
existing domain. Let’s discuss the procedure for creating the domain.

Step 1: Go to Transaction SE11.

Step 2: Select the radio button for Domain in the initial screen of the ABAP Dictionary,
and enter the name of the domain as shown in the following screenshot. Click the CREATE
button. You may create domains under the customer namespaces, and the name of the
object always starts with 'Z" or ‘Y".

= ABAP Dictionary: Initial Screen
& | ~JH @@ BHE B0 ias8 EE

ABAP Dictionary: Initial Screen
ao o og FEe T @

(Database table

ey

(Data type

(O Type Group

(&) Darmain 'ZIEP_1E '
(1Search help ' '
(Lock object ' '

[-:':’»33** Display I [{;’? Change J ID Create

70

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Step 3: Enter the description in the short text field of the maintenance screen of the
domain. In this case, it is "Customer Domain”. Note: You cannot enter any other attribute
until you have entered this attribute.

Step 4: Enter the Data Type, No. of Characters, and Decimal Places in the Format block
of the Definition tab. Press the key on Output Length and it proposes and displays the
output length. If you overwrite the proposed output length, you may see a warning while
activating the domain. You may fill in the Convers. Routine, Sign and Lower Case fields if
required. But these are always optional attributes.

Step 5: Select the Value Range tab. If the domain is restricted to having only fixed values
then enter the fixed values or intervals. Define the value table if the system has to propose
this table as a check table while defining a foreign key for the fields referring to this
domain. But all these are optional attributes.

Dictionary: Change Domain

% Yol s AECH

Darmain ZSEF 18 Mewy (Revised)
Short Description CLstomer Domain
Froperties . Definition YWalue Range
Format
Data Type NITHMLC Character string with only digits
Mo, Characters]
Decimnal Places 1]

Cutput Characteristics

Cutput Length a8
Corvers, Routine

Step 6: Save your changes. The Create Object Directory Entry pop-up appears and asks
for a package. You may enter the package name in which you are working. If you do not
have any package then you may create it in the Object Navigator or you can save your
domain using the Local Object button.

Step 7: Activate your domain. Click on the Activate icon (matchstick icon) or press CTRL
+ F3 to activate the domain. A pop-up window appears, listing the 2 currently inactive
objects as shown in the following snapshot:

71

tutorialspoint

EIMPLYEAEYLEARMNINEG

P

SAP ABAP

Transportable Objects Local objects |

Ohject narne

D.. Ohject Obi, name
DOME ZSEP_18
DOMA Z_SEP 21

Step 8: At this point, the top entry labeled ‘DOMA’ with the name ZSEP_18 is to be
activated. As this is highlighted, click the green tick button. This window disappears and
the status bar will display the message ‘Object activated'.

If error messages or warnings occurred when you activated the domain, the activation log
is displayed automatically. The activation log displays information about activation flow.
You can also call the activation log with Utilities(M) - Activation log.

72
'@j Mtutorialspoint

EIMPLYEAEYLEARMNINEG

27. ABAP-Data Elements

Data elements describe the individual fields in the ABAP Data Dictionary. They are the
smallest indivisible units of the complex types, and they are used to define the type of
table field, structure component or row type of a table. Information about the meaning of
a table field and also information about editing the corresponding screen field could be
assigned to a data element. This information is automatically available to all the screen
fields that refer to the data element. Data elements describe either elementary types or
reference types.

Table

uses

uses

Creating Data Elements

Before creating a new data element, you need to check whether any existing data elements
have the same semantic specifications required in your table field. If so, you may use that
existing data element. You can assign the data element with a predefined type, domain,
or reference type.

Following is the procedure for creating the data element:

Step 1: Go to Transaction SE11.

Step 2: Select the radio button for Data type in the initial screen of the ABAP Dictionary,
and enter the name of the data element as shown below.

Step 3: Click the CREATE button. You may create data elements under the customer
namespaces, and the name of the object always starts with ‘Z’ or 'Y’.

73

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

ABAP Dictionary: Initial Screen
go | o e o @

(Database table

1 iE

(e)Data type \Z_CUST
O Type Group

(Darmain

T 15earch help

(Lock object

lt."’»?;:" Diisplay ‘ l.;f' Change J ID Create

Step 4: Check the Data element radio button on the CREATE TYPE pop-up that appears
with three radio buttons.

(®)Data element
CStructure

(1 Table type

Step 5: Click the green checkmark icon. You are directed to the maintenance screen of
the data element.

Step 6: Enter the description in the short text field of the maintenance screen of the data
element. In this case, it is "Customer Data Element”. Note: You cannot enter any other
attribute until you have entered this attribute.

74

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Dictionary: Change Data Element

53‘(:»’? %" ETJ I Di.—" % .E., Docurnentation Supplermentary D

Data element Z_CUsT MNerw (Revised)

Short Description Custormer Data Elernent

attributes o Data Type Further Characteristics Field Lakbel

® Elernentary Type

® Diormain ZSEP 18 Custarner Dormnain
Data Type MNUMC Character string with only digits
Length =

Step 7: Assign the data element with the type. You can create an elementary data element
by checking elementary type or a reference data element by checking Reference type. You
can assign a data element to a Domain or Predefined Type within Elementary Type and
with Name of Reference Type or Reference to Predefined Type within Reference Type.

Step 8: Enter the fields for short text, medium text, long text, and heading in the Field
Label tab. You can press Enter and the length is automatically generated for these labels.

Dictionary: Change Data Element

'::Ef? ﬂ’ GO Di.—" o .E, Documentation Supplermentary

Data elerment Z_CUsT Mesw (Revisad)

Short Description CLstormer Data Elerment

Attributes Data Type Further Characteristics Field Label

Length Field Label

Short 10 Customer M

Mediurn 15 Custormer MNurmber
Long 20 Custormner Murnber
Heading 15 Custormer Murmber

Step 9: Save your changes. The Create Object Directory Entry pop-up appears and asks
for a package. You may enter the package name in which you are working. If you do not
have any package then you may create it in the Object Navigator or you can save your
data element using the Local Object button.

75

w tutorialspoint

SAP ABAP

Step 10: Activate your data element. Click the Activate icon (matchstick icon) or press
CTRL + F3 to activate the data element. A pop-up window appears, listing the 2 currently
inactive objects as shown in the following screenshot.

Transpartable Ohjects - Local objects |

Object name

0., Ohject Obi. narme
ODTEL Z_CUsT
DOMs Z_SEP_21

Step 11: At this point, the top entry labeled '‘DTEL" with the name Z_CUST is to be
activated. As this is highlighted, click the green tick button. This window disappears and
the status bar will display the message ‘Object activated'.

If error messages or warnings occurred when you activated the data element, the
activation log is displayed automatically. The activation log displays information about
activation flow. You can also call the activation log with Utilities(M) > Activation log.

76

MPLYEAEYLEARMNING

'@j Mtutorialspoint

28. ABAP-Tables

Tables can be defined independent of the database in ABAP Dictionary. When a table is
activated in ABAP Dictionary, similar copy of its fields is created in the database as well.
The tables defined in ABAP Dictionary are translated automatically into the format that is
compatible with the database because the definition of the table depends on the database
used by the SAP system.

A table can contain one or more fields, each defined with its data type and length. The
large amount of data stored in a table is distributed among the several fields defined in
the table.

Types of Table Fields

A table consists of many fields, and each field contains many elements. The following table
lists the different elements of table fields:

Elements Description

This is the name given to a field that can contain a maximum of 16
characters. The field name may be composed of digits, letters, and
Field name underscores. It must begin with a letter.

Determines whether or not a field belongs to a key field.

Key flag
Field type Assigns a data type to a field.
Field length The number of characters that can be entered in a field.

Defines the number of digits permissible after the decimal point.
Decimal places | This element is used only for numeric data types.

Short text Describes the meaning of the corresponding field.

Creating Tables in ABAP Dictionary

Step 1: Go to transaction SE11, select the ‘Database table’ radio button, and enter a
name for the table to be created. In our case, we have entered the name ZCUSTOMERS1.
Click the Create button. The Dictionary: Maintain Table screen appears. Here the ‘Delivery
and Maintenance’ tab is selected by default.

Step 2: Enter an explanatory short text in the Short Description field.

77

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Step 3: Click the Search Help icon beside the Delivery Class field. Select ‘A [Application
table (master and transaction data)]’ option.

Step 4: Select the 'Display/Maintenance Allowed’ option from the ‘Data Browser/Table
view Maintenance’ drop-down menu. The Dictionary: Maintenance Table screen appears.

Transp, Table ZCUSTOMERS 1 Mesw (Revised)

Short Description iCustomers Table

attributes / Delivery and Maintenance Fields Entry helpfcheck Curr

Delivery Class 4 Application table (master and transaction

Data Browser/Table Yiew Maint, lisplay [Maintenance Allowed

Step 5: Select the Fields tab. The screen containing the options related to the Fields tab
appears.

Step 6: Enter the names of table fields in the Field column. A field hame may contain
letters, digits, and underscores, but it must always begin with a letter and must not be
longer than 16 characters.

The fields that are to be created must also have data elements because they take the
attributes, such as data type, length, decimal places, and short text, from the defined data
element.

Step 7: Select the Key column if you want the field to be a part of the table key. Let’s
create fields such as CLIENT, CUSTOMER, NAME, TITLE and DOB.

Step 8: The first field is an important one and it identifies the client which the records are
associated with. Enter ‘Client’ as the Field and *‘MANDT’ as the Data Element. The system
automatically fills in the Data Type, Length, Decimals and Short Description. The ‘Client’
field is made a key field by checking the ‘Key’ box.

Step 9: The next field is ‘Customer’. Check the box to make it a key field and enter the
new Data Element ‘ZCUSTNUM’. Click the Save button.

Step 10: As the Data Element *ZCUSTNUM’ doesn’t yet exist, it has to be created. Double-
click the new Data Element and the ‘Create Data Element’ window appears. Answer ‘Yes’
to this and a ‘Maintain Data Element’ window appears.

Step 11: Enter ‘Customer Number’ in the Short Description area. The Elementary data
type called ‘Domain’ should be defined for the new Data element. So enter ‘ZCUSTD1/,
double-click it and agree to save the changes made. Choose ‘Yes’ to create the domain
and type into the ‘Short Description’ box a description of the domain.

78

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

attributes o Data Type Further Characteristics Field Label

Elermentary Type

= Diornain ZCTUSTDL Murmber
Data Type MNUMC Character string with anly digits
Length =

_IPredefined Type Data Type
Length 0

_\Reference Type

The 'Definition’ tab opens automatically. The first field is ‘Data Type".

Step 12: Click inside the box and select ‘NUMC’ type from the drop-down menu. Enter the
number 8 in the ‘No. of characters’ field (a maximum of 8 characters) and enter 0 in
‘Decimal places’ area. The Output length of 8 must be selected and then press Enter. The
‘NUMC' field’s description must re-appear, confirming that this is a valid entry.

Step 13: Click Save button and Activate the object.

Step 14: Press F3 to return to the ‘Maintain/Change Data Element’ screen. Create four
Field labels as shown in the following snapshot. After this, Save and Activate the element.

Dictionary: Change Data Element
== | PR e & aad Documentation Supplementary Docurmen

Data elerment ZCUSTNUM Mewy (Revised)

Short Description Custormer Murnber

Attributes Data Type Further Characteristics Field Latel

Length Field Label

Shart 10 Customer C

MediLrm 15 Custorner Murnber
Lang 20 Custormer Nurnber
Heading 15 Custormer Nurnber

Step 15: Press the back button to return to the table maintenance screen. The Customer
column has the correct Data Type, Length, Decimals and Short Description. This indicates
the successful creation of a Data element and also the Domain used.

79

tutorialspoint

EIMPLYEAEYLEARMNINEG

P

SAP ABAP

Dictionary: Change Table

E = | PR g B aE O BE [l Technical Settings Ay

Indexes...

EZCUSTOMERS1 ey

Transp, Tahle

Short Description Custorners Table

Attributes Delivery and Maintenance Fields Entry helpfcheck Currency, Quantity Field:
EEEEE BEElal LE] schHen | [predefned Tyne |

Field Key Ini... |Data elerment Data Type |Length Deci... | Short Description

CLIENT v MANDT CLNT 3 0lient

CUSTOMER. v ZCITETHIHN NUHMC g 0 ustomer Murnber

Similarly, we need to create three additional fields such as NAME, TITLE and DOB.

Step 16: Select ‘Technical settings’ from the toolbar. Choose APPLO for the ‘Data class’
and the first size category 0 for the 'Size’ category’ field. In case of buffering options,
‘Buffering not allowed’ has to be selected.

Step 17: Click Save. Go back to the table and Activate it. The following screen appears.

Dictionary: Display Table

| | PG4) &g T BE [Technical Settings Indexes... Apy

Trarsp. Table
Short Description

ZCUSTOMERS 1

Customers Table

Attributes Delivery and Maintenance Fields Entry helpfcheck Currency fiouantity Fields
=) () E FEEla] WF schhep |

Field Key Ini... [Data element Data Type |Length |Deci... |Short Description

CLIENT MANDT CLNT 3 0 Clierit

CUSTOMEER ZCITATHNUM HUMC] 0 Custormer Murnber

NAME ZCUSTNAME CHAR 40 OMName Data Element

TITLE ZTITLEL CHAR. 15 0 Title Data Elerment

DOE ZDOBL DATS & 0DOB Data Element

Active

The table ‘ZCUSTOMERS1' is activated.

MBLY

=N

P

tutorialspoint

EAEYLEARMNING

80

29. ABAP - Structures

Structure is a data object that is made up of components of any data type stored one
after the other in the memory.

Structure

Customer MName

First nama

Last namea

Address Street

House no

Street name

City name

ZIP Coda

Structures are useful for painting screen fields, and for manipulating data that has a
consistent format defined by a discrete number of fields.

A structure may have only a single record at run-time, but a table can have many records.

Creating a Structure
Step 1: Go to transaction SE11.

Step 2: Click on the ‘Data type’ option on the screen. Enter the name 'ZSTR_CUSTOMER1'
and click on Create button.

Step 3: Select the option 'Structure' in the next screen and press Enter. You can see
'Maintain / Change Structure' wizard.

Step 4: Enter the Short Description as shown in the following snapshot.

81

w tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Dictionary: Change Structure
7 By 4o 1 = ga = Hierarchy Display Append Structure. ..

Structure Z3TR_CUATOMERL Menw(Revised)

Shiort Description Custormer Information

Step 5: Enter the Component (Field Name) and Component Type (Data Element).

Note: Here the component names start with Z as per the SAP recommendation. Let's use
data elements that we have already created in the database table.

Step 6: You need to Save, Check and Activate after providing all the components and
component types.

The following screen appears:

Transportable Objects - Local ohiects

Object name

O.. Ohiect Obj. name
TAEL ZSTR_CUST
TABL Z3TR_CUSTOMERL

DOMS Z_SEP 21

Step 7: As this 'ZSTR_CUSTOMER1' is highlighted, click the green tick button. This window
disappears and the status bar will display the message ‘Active’.

The structure is now activated as shown in the following snapshot:

Structure Z3TR_CUSTOMERL

Short Description Customer Information

Attributes - Components Entry helpfcheck + Currency/gquantity fields

HEREE [SfEE| 2] rredened Type | 1/4
Companent Typing Method Compaonent Type Data Type Length Dec.. Short Description
CLIENT Types ¥ MANDT CLNT 3 0Clent
HANE Types ¥ ZCUSTHANE CHAR 40 0Mame Data Element
CTATOMER Types ¥ ZCTTATHM Humc i 0Customer Mumber
DOE Types ¥ ZDOBL DATS 5 0DOR Data Element

82

w tutorialspoint

30. ABAP-—Views

A View acts like a database table only. But it will not occupy storage space. A view acts
similar to a virtual table - a table that does not have any physical existence. A view is
created by combining the data of one or more tables containing information about an
application object. Using views, you can represent a subset of the data contained in a table
or you can join multiple tables into a single virtual table.

Data related to an application object is distributed among multiple tables by using
database views. They use the inner join condition to join the data of different tables. A
maintenance view is used to display and modify the data stored in an application object.
Every maintenance view has a maintenance status associated with it.

We use projection view to mask unwanted fields and display only relevant fields in a table.
Projection views must be defined over a single transparent table. A projection view
contains exactly one table. We can't define selection conditions for projection views.

Creating a View

Step 1: Select the View radio button on the initial screen of ABAP Dictionary. Enter the
name of the view to be created and then click Create button. We entered the name of the
view as ZVIEW_TEST.

Step 2: Select the projection view radio button while choosing view type and click Copy
button. The 'Dictionary: Change View’ screen appears.

Step 3: Enter a short description in the Short Description field and the name of the table
to be used in the Basis Table field as shown in the following snapshot.

Dictionary: Change View

e POy d) %200 KR

Projection view \ZVIEN TEST Hew (Revised)

Shart Description If:reatiﬂg Projection e

Properties ,/'/ Wiew Fields], Maintenance Status

Basis Table ZCTSTOMERS 1

YEEERE | T e

83

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Step 4: Click the ‘Table fields’ button to include the fields of ZCUSTOMERS1 table in the
projection view.

Step 5: The Field Selection from Table ZCUSTOMERS1 screen appears. Select the fields
that you wish to include in the projection view as shown in the following snapshot.

Field Name 5 Short description

« | CLIENT Client

« | CUSTOMER Customer Numher

o | NAME Name Data Element
TITLE Title Data Element
DOE DOE Data Element

Step 6: After clicking the Copy button, all the selected fields for the projection view are
displayed on the ‘Dictionary: Change View' screen.

Dictionary: Change View
| PeE s S SHEDH EME

Projection view ZVIEW _TEST Active
Short Description Creating Projection Wiew
Properties . Wiew Fields Maintenance Status
Basis Table ZCUSTOMERS L

|8 | = | Table fislds

Wigw fields

Field Marme key Data element M... DTyp Lenath Short description
CLIENT MANDT CLNT 3 Client

CUSTOMEER, ECUSTHIM NTTMC & Customer Murnber
HAME ZCUSTHAME CHAR, 40 Marne Data Element

Step 7: Select Maintenance Status tab to define an access method. Choose read-only
radio button and ‘Display/Maintenance Allowed with Restrictions’ option from the drop-
down menu of ‘Data Browser/Table View Maintenance’.

Step 8: Save and Activate it. In the 'Dictionary: Change View’ screen select Utilities(M) >
Contents to display the selection screen for ZVIEW_TEST.

Step 9: Click the Execute icon. The output of the projection view appears as shown in the
following screenshot.

84

tutorialspoint

EIMPLYEAEYLEARMNINEG

P

SAP ABAP

Data Browser: Table ZVIEW _TEST Select Entries 4
& & & 7 S

Table: ZVIEW _TEST

Displayed Fields: 3 ot 3 Fixed Columns: 2

Client|Customer Number|Name

oo Qoloo0ool MAEE
oo Qolo0ooz JAMES
a0 00100003 ATRIELE
a0 Qolo0ood 3TEPHEN

The table ZCUSTOMERS1 consists of 5 fields. Here the displayed fields are 3 (Client,
Customer Number and Name) with 4 entries. Customer numbers are from 100001 to
100004 with appropriate names.

85

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

31. ABAP-—Search Help

Search Help, another repository object of ABAP Dictionary, is used to display all the
possible values for a field in the form of a list. This list is also known as a hit list. You can
select the values that are to be entered in the fields from this hit list instead of manually
entering the value, which is tedious and error prone.

Creating Search Help

Step 1: Go to transaction SE11. Select the radio button for Search help. Enter the name
of the search help to be created. Let's enter the name ZSRCH1. Click on the Create button.

Step 2: The system will prompt for the search help type to be created. Select the
Elementary search help, which is default. The screen to create elementary search help as
shown in the following screenshot appears.

Step 3: In the selection method, we need to indicate whether our source of data is a table
or a view. In our case it happens to be a table. The table is ZCUSTOMERS1. It is selected
from a selection list.

Step 4: After the selection method is entered, the next field is the Dialog type. This
controls the appearance of the restrictive dialog box. There is a drop-down list with three
options. Let's select the option 'Display values immediately"'.

Dictionary: Change Search Help
c2 Pa® a1 Bl Ð

Elernentary srch hilp |Z5RCHL Tnactive

Short description |Search Help Demo

Attributes Definition |

| Data callection | Dialog behavior
Selection method |ZCUSTOMERS 1 ' Dialog type 'Displaﬁ; yalues immediately -
Text table Haot key []

Step 5: Next is the parameter area. For each Search help parameter or field, these column
fields have to be entered as per the requirements.

e« Search help parameter: This is a field from the source of data. The fields from
the table are listed in the selection list. The fields participating in the search help
would be entered, one field in each row. Let's include the two fields CUSTOMER and
NAME. How these two fields participate is indicated in the rest of the columns.

86

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

HEEEE
Pararmeter
Search help pararmeter IMP EXP LPo: SPos |SDis Data elernent
CITSTOMER v W 1 1 ZCUSTHNUM
NAME v 2 2 ZCUSTHNAME

Import: This field is a checkbox for indicating whether a Search help parameter is
an import parameter. The export or import is with reference to the search help.

Export: This field is a checkbox for indicating whether a Search help parameter is
an export parameter. The export will be transfer of field values from the selection
list to screen fields.

LPos: Its value controls the physical position of Search help parameter or field in
the selection list. If you enter a value 1, the field will appear in the first position in
the selection list and so on.

SPos: It controls the physical position of Search Help parameter or field in the
restrictive dialog box. If you enter a value of 1, the field will appear in the first
position in the restrictive dialog box and so on.

Data element: Every Search Help parameter or field by default is assigned a data
element that was assigned to it in the source of data (Table or View). This data
element name appears in display mode.

Step 6: Perform a consistency check and activate the search help. Press F8 to execute.
The 'Test Search Help ZSRCH1' screen appears as shown in the following screenshot.

Srch. help
Pararmneter Field attr, Screen fid
CUSTOMER Ready for inp =3
MAME Ready for inp |i|
87
A tutorialspoint

SAP ABAP

Step 7: Let's enter the number 100004 in the CUSTOMER's 'Ready for inp' screen field.
Press Enter.

[= Restrict Walue Range (1) 1 Entry found

| Restrictions
EACAEN A ESIEED =1H

Custome |Name
a0100004 STEPHEM

The customer number, 100004, and the name ‘STEPHEN' is displayed.

88
' tutorialspoint

EIMPLYEAEYLEARMNINEG

32. ABAP-Lock Objects

Lock Object is a feature offered by ABAP Dictionary that is used to synchronize access to
the same data by more than one program. Data records are accessed with the help of
specific programs. Lock objects are used in SAP to avoid the inconsistency when data is
inserted into or changed in the database. Tables whose data records are to be locked must
be defined in a Lock Object, along with their key fields.

Lock Mechanism

Following are the two main functions accomplished with the lock mechanism:

e A program can communicate with other programs about data records that it is just
reading or changing.

e A program can prevent itself from reading data that has just been changed by
another program.

A lock request is first generated by the program. Then this request goes to the Enqueue
server and the lock is created in the lock table. The Enqueue server sets the lock and the
program is finally ready to access data.

Lock Mechanism

Request Lock

Enqueue
sanver

Set Lock

Enter Lock
Access Data

Lock table

Database

89

w tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Creating Lock Objects

Step 1: Go to transaction SE11. The following screen opens.

ABAP Dictionary: Initial Screen
go 1 o P o O

IDatabase table ZCUSTOMERS 1

ey

Data type
O Type Group

1 Darmain
1Search help
Lock ohject EZLOCELZ

Sy Display | change | | Create

Step 2: Click ‘Lock Object’ radio button. Enter the name of lock object starting with E and
click the Create button. Here we use EZLOCK12.

Step 3: Enter the short description field and click on Tables tab.
Step 4: Enter the table name in Name field and select the lock mode as Write Lock.

Step 5: Click on Lock parameter tab, the following screen will appear.

90

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

Dictionary: Change Lock Object
G Pam oan) % gz U H

Lock object EZLOCKLZ Active

Short Description ocking Chiects

attributes -~ Tables . Lock parameter |

W Lock parameter Tahle Field
| CLIENT ZCUSTOMERSL CLIENT
| CUSTOMEE. ZCUSTOMERS L CITSTOMER

Step 6: Save and activate. Automatically 2 function modules will generate. To check
function modules, we can use Go to - Lock Modules.

Step 7: Click Lock Modules and the following screen will open.

[= Repository Info Systern: Function Modules Find (2 Hits)

Function group Function group short text
Funiction Module Name ohort text for function module
JA1BCDWEEN /TENOQOQO *BEPM 4.0 Demand FPlamnning
DEQUETE _EZLOCELZ Feleazse lock on object EZLOCELZ
ENQUEUE _EZLOCELZ Fequest lock for object EZLOCEL:Z

The lock object is created successfully.

The key fields of a table included in a Lock Object are called lock arguments and they are
used as input parameters in function modules. These arguments are used to set and
remove the locks generated by the Lock Object definition.

91

MPLYEAEYLEARMNING

w Mtutorialspoint

33. ABAP - Modularization

It is a good practice to keep your programs as self-contained and easy to read as possible.
Just try to split large and complicated tasks into smaller and simpler ones by placing each
task in its individual module, on which the developer can concentrate on without other
distractions.

In SAP ABAP environment, modularization involves the organization of programs into
modular units, also known as logical blocks. It reduces redundancy and increases
program readability even as you are creating it and subsequently during the maintenance
cycle. Modularization also enables reusability of the same code again. ABAP has made it
necessary for developers to modularize, i.e. organizing the programs relatively more, than
in the OOPS-based languages that have relatively more built-in modular features. Once a
small, modularized section of code is complete, debugged and so on, it does not
subsequently have to be returned to, and developers can then move on and focus on other
issues.

ABAP programs are made up of processing blocks known as modularizing processing
blocks. They are:

e The processing blocks called from outside the program and from the ABAP run-time
environment (i.e., event blocks and dialog modules).

e Processing blocks called from ABAP programs.

Apart from the modularization with processing blocks, source code modules are used to
modularize your source code through macros and include programs.

Modularization at source code level:

e Local Macros

e Global Include programs

Modularization through processing blocks called from ABAP programs:

e Subroutines

e Function modules

Modularizing a source code means placing a sequence of ABAP statements in a module.
The modularized source code can be called in a program as per the requirement of the
user. Source code modules enhance the readability and understandability of ABAP
programs. Creating individual source code modules also prevents one from having to
repeatedly write the same statements again and again that in turn makes the code easier
to understand for anyone going through it for the first time.

92

@ tutorialspoint

EIMPLYEAEYLEARMING

34. ABAP-Subroutines

A subroutine is a reusable section of code. It is a modularization unit within the program
where a function is encapsulated in the form of source code. You page out a part of a
program to a subroutine to get a better overview of the main program, and to use the
corresponding sequence of statements many times as depicted in the following diagram.

ProgramyY

Call Subroutine
Call Subroutine

Program X

Same

Source Call Subroutine
Code

blocks

Subroutine

More clear & easier
to maintain

We have program X with 3 different source code blocks. Each block has the same ABAP
statements. Basically, they are the same code blocks. To make this code easier to
maintain, we can encapsulate the code into a subroutine. We can call this subroutine in

our programs as many times as we wish. A subroutine can be defined using Form and
EndForm statements.

93

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Following is the general syntax of a subroutine definition.

FORM <subroutine_name>.

<statements>

ENDFORM.

We can call a subroutine by using PERFORM statement. The control jumps to the first
executable statement in the subroutine <subroutine_name>. When ENDFORM is
encountered, control jumps back to the statement following the PERFORM statement.

Example

Step 1: Go to transaction SE80. Open the existing program and then right-click on
program. In this case, it is 'ZSUBTEST'.

Step 2: Select Create and then select Subroutine. Write the subroutine name in the field
and then click the continue button. The subroutine name is 'Sub_Display' as shown in the
following screenshot.

x

Subroutine Sub_Display

INCLUDE Selection

BTE3T_F0l
Z3UETEST

Hew Include

HMain Program

— e e T e

v [J 7 _IMNCLUDING
v [J zMACRO_TEST
v [J ZSUBTEST

i i
I3

Including

A Macro

Subrout

Step 3: Write the code in FORM and ENDFORM statement block. The subroutine has been

created successfully.

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

94

SAP ABAP

We need to include PERFORM statement to call the subroutine. Let’s take a look at the
code:

REPORT ZSUBTEST.
PERFORM Sub_Display.

* Form Sub_Display
¥ --> pl text
* <-- p2 text

FORM Sub_Display.

Write: 'This is Subroutine'.

Write: / 'Subroutine created successfully'.
ENDFORM. " Sub_Display

Step 4: Save, activate and execute the program. The above code produces the following
output:

Subroutine Test:

This is Subroutine

Subroutine created successfully

Hence, using subroutines makes your program more function-oriented. It splits the
program's task into sub-functions, so that each subroutine is responsible for one sub-
function. Your program becomes easier to maintain as changes to functions often only
have to be implemented in the subroutine.

95

EIMPLYEAEYLEARMNINEG

'@j Mtutorialspoint

35. ABAP-Macros

If we want to reuse the same set of statements more than once in a program, we need to
include them in a macro. For example, a macro can be useful for long calculations or for
writing complex WRITE statements. We can only use a macro within a program in which
it is defined. Macro definition should occur before the macro is used in the program.

Macros are designed based on placeholders. Placeholder works like pointers in C language.
You can define a macro within the DEFINE...END-OF-DEFINITION statement.

Following is the basic syntax of a macro definition:

DEFINE <macro_name>.
<statements>

END-OF -DEFINITION.

<macro_name> [<paraml> <param2>....].

It is necessary to define a macro first before invoking it. The <param1l1>.... replaces the
placeholders &1...in the ABAP statements contained in the macro definition.

The maximum number of placeholders in a macro definition is nine. That is, when a
program is executed, the SAP system replaces the macro by appropriate statements and
the placeholders &1, &2,...&9 are replaced by the parameters paraml,
paramz2,....param9. We may invoke a macro within another macro, but not the same
macro.

Example

Go to transaction SE38. Create a new program ZMACRO_TEST along with the description
in the short text field, and also with appropriate attributes such as Type and Status as
shown in the following screenshot:

Attributes |
Type \Executable progranm v|

Status | Test Program v

&pplication ' v
authorization Group

Logical database ' '

Selection screen []

[|Editar lock []Fixed point arithmetic

[v|Unicode checks active []5tart using variant

96

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Following is the code:

REPORT ZMACRO_TEST.

DEFINE mac_test.

WRITE: 'This is Macro &1'.

END-OF -DEFINITION.

PARAMETERS: s1 type C as checkbox.

PARAMETERS: s2 type C as checkbox.

PARAMETERS: s3 type C as checkbox default 'X'.
START-OF-SELECTION.

IF s1 = 'X'.
mac_test 1.

ENDIF.

IF s2 = 'X'.
mac_test 2.

ENDIF.

IF s3 = 'X'.
mac_test 3.

ENDIF.

We have 3 checkboxes. While executing the program, let’s select the S2 checkbox.

A Macro Program
&

51
|52
53

The above code produces the following output:

A Macro Program

This is Macro 2

If all checkboxes are selected, the code produces the following output:

A Macro Program

This is Macro 1 This is Macro 2 This is Macro 3

97

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

36. Function Modules

Function modules make up a major part of a SAP system, because for years SAP has
modularized code using function modules, allowing for code reuse, by themselves, their
developers and also by their customers.

Function modules are sub-programs that contain a set of reusable statements with
importing and exporting parameters. Unlike Include programs, function modules can be
executed independently. SAP system contains several predefined function modules that
can be called from any ABAP program. The function group acts as a kind of container for
a number of function modules that would logically belong together. For instance, the
function modules for an HR payroll system would be put together into a function group.

To look at how to create function modules, the function builder must be explored. You can
find the function builder with transaction code SE37. Just type a part of a function module
name with a wild card character to demonstrate the way function modules can be searched
for. Type *amount* and then press the F4 key.

Function Builder: Initial Screen

o 1 B o O O Ef Reassign...

. |
Function Module *amount®

|i53::‘° Display | |§f’7" Chanige | ||:| Create

The results of the search will be displayed in a new window. The function modules are
displayed in the lines with blue background and their function groups in pink lines. You
may look further at the function group ISOC by using the Object Navigator screen
(Transaction SE80). You can see a list of function modules and also other objects held in
the function group. Let's consider the function module SPELL_AMOUNT. This function
module converts numeric figures into words.

Creating a New Program
Step 1: Go to transaction SE38 and create a new program called Z_SPELLAMOUNT.

Step 2: Enter some code so that a parameter can be set up where a value could be entered
and passed on to the function module. The text element text-001 here reads ‘Enter a
Value'.

98

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Step 3: To write the code for this, use CTRL+F6. After this, a window appears where ‘CALL
FUNCTION' is the first option in a list. Enter 'spell_amount' in the text box and click the
continue button.

x

) CALL FUNCTION spell amount
T ABAP Obijects Patterns
MESSAGE 1D Cat E MNumber
OSELECT * FROM
PERFCRM
OAUTHORITY CHECK,
WRITE
ICASE for status
IStructured Data Object

& with fields from structure

with TYPE for struct
ICALL DIALOG

Step 4: Some code is generated automatically. But we need to enhance the IF statement
to include a code to WRITE a message to the screen to say "The function module returned
a value of: sy-subrc” and add the ELSE statement so as to write the correct result out
when the function module is successful. Here, a new variable must be set up to hold the
value returned from the function module. Let's call this as 'result'.

Following is the code:

REPORT Z_SPELLAMOUNT.

data result like SPELL.

selection-screen begin of line.
selection-screen comment 1(15) text-001.
parameter num_1 Type I.

selection-screen end of line.

CALL FUNCTION 'SPELL_AMOUNT'

EXPORTING

AMOUNT = num_1

IMPORTING

IN_WORDS = result.

IF SY-SUBRC <> 0.

Write: 'Value returned is:', SY-SUBRC.
else.

Write: 'Amount in words is:', result-word.
ENDIF.

Step 5: The variable which the function module returns is called IN_WORDS. Set up the
corresponding variable in the program called ‘result’. Define IN_WORDS by using the LIKE
statement to refer to a structure called SPELL.

99

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

Step 6: Save, activate and execute the program. Enter a value as shown in the following
screenshot and press F8.

Spelling the Amount
&

Enter a Value Lesg0

The above code produces the following output:

Spelling the Amount
Amount in words is:

FIVE THOUSAND SIX HUNDRED EIGHTY

100

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

37. ABAP—Include Programs

Include programs are global repository objects used to modularize the source code. They
allow you to use the same source code in different programs. Include programs also allow
you to manage complex programs in an orderly way. In order to use an include program
in another program, we use the following syntax:

INCLUDE <program_name>.

INCLUDE statement has the same effect as copying the source code of the include program
<program_name> into another program. As include program can’t run independently, it
has to be built into other programs. You may also nest include programs.

Following are a couple of restrictions while writing the code for Include programs:

e Include programs can't call themselves.

e Include programs must contain complete statements.

Following are the steps to create and use an Include program:

Step 1: Create the program (Z_TOBEINCLUDED) to be included in ABAP Editor. Code to
be included in ABAP Editor is:

PROGRAM Z_TOBEINCLUDED.

Write: / 'This program is started by:', SY-UNAME,
/ 'The Date is:', SY-DATUM,
/ 'Time is', SY-UZEIT.

Step 2: Set the Type of the program to INCLUDE program, as shown in the following
screenshot.

| Attributes
Type INCLUDE prograrm -/
Status 'Test Program - |
Application ' -

Authorization Group

[|Editar lock

101

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Step 3: Click the ‘Save’ button and save the program in a package named ZINCL_PCKG.

Step 4: Create another program where the program Z_TOBEINCLUDED has to be used.
Here we have created another program named Z_INCLUDINGTEST and assigned the type
for the program as Executable program.

Step 5: The coding for Z_INCLUDINGTEST program includes the Z_TOBEINCLUDED
program with the help of the INCLUDE statement as shown in the following code.

REPORT Z_INCLUDINGTEST.

INCLUDE Z_TOBEINCLUDED.

Step 6: Save, activate and execute the program.

The above code produces the following output:

This program is started by: SAPUSER
The Date is: 06.10.2015

Time is 13:25:11

102

MPLYEAEYLEARMNING

'@j Mtutorialspoint

38. ABAP-—Open SQL Overview

Open SQL indicates the subset of ABAP statements that enable direct access to the data
in the central database of the current AS ABAP. Open SQL statements map the Data
Manipulation Language functionality of SQL in ABAP that is supported by all database
systems.

The statements of Open SQL are converted to database specific SQL in the Open SQL
interface of the database interface. They are then transferred to the database system and
executed. Open SQL statements can be used to access database tables that are declared
in the ABAP Dictionary. The central database of AS ABAP is accessed by default and also
access to other databases is possible via secondary database connections.

Whenever any of these statements are used in an ABAP program, it is important to check
whether the action executed has been successful. If one tries to insert a record into a
database table and it is not inserted correctly, it is very essential to know so that the
appropriate action can be taken in the program. This can done using a system field that
has already been used, that is SY-SUBRC. When a statement is executed successfully, the
SY-SUBRC field will contain a value of 0, so this can be checked for and one can continue
with the program if it appears.

The DATA statement is used to declare a work area. Let's give this the name
'wa_customersl'. Rather than declaring one data type for this, several fields that make up
the table can be declared. The easiest way to do this is using the LIKE statement.

INSERT Statement

The wa_customersl work area is declared here LIKE the ZCUSTOMERS1 table, taking on
the same structure without becoming a table itself. This work area can only store one
record. Once it has been declared, the INSERT statement can be used to insert the work
area and the record it holds into the table. The code here will read as 'INSERT
ZCUSTOMERS1 FROM wa_customers1'.

The work area has to be filled with some data. Use the field names from the ZCUSTOMERS1
table. This can be done by forward navigation, double clicking the table name in the code
or by opening a new session and using the transaction SE11. The fields of the table can
then be copied and pasted into the ABAP editor.

Following is the code snippet:

DATA wa_customersl LIKE ZCUSTOMERS1.

wa_customersl-customer = '100006'.
wa_customersl-name = 'DAVE'.
wa_customersl-title = 'MR'.

wa_customersl-dob = '19931017'.
INSERT ZCUSTOMERS1 FROM wa_customersl.

103

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

CHECK statement can then be used as follows. It means that if the record is inserted
correctly, the system will state this. If not, then the SY-SUBRC code which will not equal
zero will be displayed. Following is the code snippet:

IF SY-SUBRC = 0.

WRITE 'Record Inserted Successfully'.
ELSE.

WRITE: 'The return code is ', SY-SUBRC.
ENDIF.

Check the program, save, activate the code, and then test it. The output window should
display as 'Record Inserted Successfully'.

CLEAR Statement

CLEAR statement allows a field or variable to be cleared out for the insertion of new data
in its place, allowing it to be reused. CLEAR statement is generally used in programs and
it allows existing fields to be used many times.

In the previous code snippet, the work area structure has been filled with data to create a
new record to be inserted into the ZCUSTOMERS1 table and then a validation check is
performed. If we want to insert a new record, CLEAR statement must be used so that it
can then be filled again with the new data.

UPDATE Statement

If you want to update one or more existing records in a table at the same time then use
UPDATE statement. Similar to INSERT statement, a work area is declared, filled with the
new data that is then put into the record as the program is executed. The record previously
created with the INSERT statement will be updated here. Just edit the text stored in the
NAME and TITLE fields. Then on a new line, the same structure as for the INSERT
statement is used, and this time by using the UPDATE statement as shown in the following
code snippet:

DATA wa_customersl LIKE ZCUSTOMERS1.

wa_customersl-customer = '100006'.
wa_customersl-name = 'RICHARD'.
wa_customersl-title = 'MR'.

wa_customersl-dob = '19931017"'.
UPDATE ZCUSTOMERS1 FROM wa_customersl.

As UPDATE statement gets executed, you can view the Data Browser in the ABAP
Dictionary to see that the record has been updated successfully.

MODIFY Statement

MODIFY statement can be considered as a combination of the INSERT and UPDATE
statements. It can be used to either insert a new record or modify an existing record. It
follows a similar syntax to the previous two statements in modifying the record from the
data entered into a work area.

104

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

When this statement is executed, the key fields involved will be checked against those in
the table. If a record with these key field values already exist, it will be updated. If not,
then a new record will be created.

Following is the code snippet for creating a new record:

CLEAR wa_customersl.

DATA wa_customersl LIKE ZCUSTOMERS1.

wa_customersl-customer = '100007'.
wa_customersl-name = 'RALPH'.
wa_customersl-title = 'MR'.

wa_customersl-dob = '19910921"'.
MODIFY ZCUSTOMERS1 FROM wa_customersl.

In this example, CLEAR statement is used so that a new entry can be put into the work
area, and then customer (number) 100007 is added. Since this is a new, unique key field
value, a new record will be inserted, and another validation check is executed.

When this is executed and the data is viewed in the Data Browser, a new record will have
been created for the customer number 100007 (RALPH).

The above code produces the following output (table contents):

Client|Custoner MNumber|Name Title DOE

a0oo oolooool MARE jul3] 21.05,.1981
a0oo oolooooz JAMES jul3] 14,08, 1977
a0oo ooloooos AURIELE Ma 19,06, 1990
oo ooloooo4 STEPHEN ME 22.07.1985
oo oo1o0000s MARGARET Mo 02.11.1994
oo 00100006 RICHARD ME 17.10.1993
oo oo1oooo? FALPH ME 21.09,1991

105

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

39. ABAP — Native SQL Overview

The term ‘Native SQL’ refers to all statements that can be statically transferred to the
Native SQL interface of the database interface. Native SQL statements do not fall within
the language scope of ABAP and do not follow the ABAP syntax. ABAP merely contains
statements for isolating program sections in which Native SQL statements can be listed.

Application programs I
ABAP Dictionary I RI3 System programs

Mative SOL Cpen Sl
Cpen SGL
Native SQL Madule s

(Table module,
buffer management)

fodule Database interface

Database-specific layer

standard 0L (dynamic, embedded)

Relational database

In native SQL, mainly database-specific SQL statements can be used. These are
transferred unchanged from the native SQL interface to a database system and executed.
The full SQL language scope of the relevant database can be used and the addressed
database tables do not have to be declared in the ABAP Dictionary. There is also a small
set of SAP specific Native SQL statements that are handled in a specific way by the native
SQL interface.

106

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

To use a Native SQL statement, you have to precede it with the EXEC SQL statement and
end with ENDEXEC statement.

Following is the syntax:

EXEC SQL PERFORMING <form>.
<Native SQL statement>
ENDEXEC.

These statements define an area in an ABAP program where one or more Native SQL
statements can be listed. The statements entered are passed to the Native SQL interface
and then processed as follows:

e« All SQL statements that are valid for the program interface of the addressed
database system can be listed between EXEC and ENDEXEC, in particular the DDL
(data definition language) statements.

e These SQL statements are passed from the Native SQL interface to the database
system largely unchanged. The syntax rules are specified by the database system,
especially the case sensitivity rules for database objects.

o If the syntax allows a separator between individual statements, you may include
many Native SQL statements between EXEC and ENDEXEC.

e SAP specific Native SQL language elements can be specified between EXEC and
ENDEXEC. These statements are not passed directly from the Native SQL interface
to the database, but they are transformed appropriately.

Example

SPFLI is a standard SAP Table that is used to store Flight schedule information. This is
available within R/3 SAP systems depending on the version and release level. You can view
this information when you enter the Table nhame SPFLI into the relevant SAP transaction
such as SE11 or SE80. You can also view the data contained in this database table by
using these two transactions.

REPORT ZDEMONATIVE_SQL.
DATA: BEGIN OF wa,

connid TYPE SPFLI-connid,

cityfrom TYPE SPFLI-cityfrom,

cityto TYPE SPFLI-cityto,

END OF wa.
DATA c1 TYPE SPFLI-carrid VALUE 'LH'.
EXEC SQL PERFORMING loop_output.
SELECT connid, cityfrom, cityto
INTO :wa

FROM SPFLI

WHERE carrid = :c1

ENDEXEC.

FORM loop_output.

WRITE: / wa-connid, wa-cityfrom, wa-cityto.
ENDFORM.

107

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

The above code produces the following output:

SAP ABAP

EIMPLYEAEYLEARMI

NG

0400 FRANKFURT NEW YORK
2402 FRANKFURT BERLIN
0402 FRANKFURT NEW YORK
108
w tutorialspoint

40. ABAP-—Internal Tables

Internal table is actually a temporary table, which contains the records of an ABAP program
that it is being executed. An internal table exists only during the run-time of a SAP
program. They are used to process large volumes of data by using ABAP language. We
need to declare an internal table in an ABAP program when you need to retrieve data from
database tables.

Data in an internal table is stored in rows and columns. Each row is called a line and each
column is called a field. In an internal table, all the records have the same structure and
key. The individual records of an internal table are accessed with an index or a key. As
internal table exists till the associated program is being executed, the records of the
internal table are discarded when the execution of the program is terminated. So internal
tables can be used as temporary storage areas or temporary buffers where data can be
modified as required. These tables occupy memory only at run-time and not at the time
of their declaration.

Internal tables only exist when a program is running, so when the code is written, the
internal table must be structured in such a way that the program can make use of it. You
will find that internal tables operate in the same way as structures. The main difference
being that structures only have one line, while an internal table can have as many lines as
required.

An internal table can be made up of a number of fields, corresponding to the columns of
a table, just as in the ABAP dictionary a table was created using a number of fields. Key
fields can also be used with internal tables, and while creating these internal tables they
offer slightly more flexibility. With internal tables, one can specify a non-unique key,
allowing any number of non-unique records to be stored, and allowing duplicate records
to be stored if required.

The size of an internal table or the number of lines it contains is not fixed. The size of an
internal table changes according to the requirement of the program associated with the
internal table. But it is recommended to keep internal tables as small as possible. This is
to avoid the system running slowly as it struggles to process enormous amounts of data.

Internal tables are used for many purposes:

e They can be used to hold results of calculations that could be used later in the
program.

¢ Aninternal table can also hold records and data so that this can be accessed quickly
rather than having to access this data from database tables.

e They are hugely versatile. They can be defined using any number of other defined
structures.

109

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Example

Assume that a user wants to create a list of contact numbers of various customers from
one or several large tables. The user first creates an internal table, selects the relevant
data from customer tables and then places the data in the internal table. Other users can
access and use this internal table directly to retrieve the desired information, instead of
writing database queries to perform each operation during the run-time of the program.

110

MPLYEAEYLEARMNING

'@j Mtutorialspoint

41. ABAP-—Creating Internal Tables

DATA statement is used to declare an internal table. The program must be told where the
table begins and ends. So use the BEGIN OF statement and then declare the table name.
After this, the OCCURS addition is used, followed by a number, here 0. OCCURS tells SAP
that an internal table is being created, and the 0 states that it will not contain any records
initially. It will then expand as it is filled with data.

Following is the syntax:

DATA: BEGIN OF <internal_tab> Occurs 0,

Let’s create the fields on a new line. For instance, create ‘name’ which is declared as LIKE
ZCUSTOMERS1-name. Create another field called ‘dob’, LIKE ZCUSTOMERS1-dob. It is
useful initially to give the field names in internal tables the same names as other fields
that have been created elsewhere. Finally, declare the end of the internal table with "END
OF <internal_tab>." as shown in the following code:

DATA: BEGIN OF itab®l Occurs 0,
name LIKE ZCUSTOMERS1-name,
dob LIKE ZCUSTOMERS1-dob,

END OF itabel.

Here ‘itab01’ is commonly used shorthand when creating temporary tables in SAP. The
OCCURS clause is used to define the body of an internal table by declaring the fields for
the table. When the OCCURS clause is used, you can specify a numeric constant ‘n’ to
determine additional default memory if required. The default size of memory that is used
by the OCCUR 0 clause is 8 KB. The structure of the internal table is now created, and the
code can be written to fill it with records.

An internal table can be created with or without using a header line. To create an internal
table with a header ling, use either the BEGIN OF clause before the OCCURS clause or the
WITH HEADER LINE clause after the OCCURS clause in the definition of the internal table.
To create an internal table without a header line, use the OCCURS clause without the
BEGIN OF clause.

You can also create an internal table as a local data type (a data type used only in the
context of the current program) by using the TYPES statement. This statement uses the
TYPE or LIKE clause to refer to an existing table.

The syntax to create an internal table as a local data type is:

TYPES <internal_tab> TYPE|LIKE <internal_tab_type> OF <line_type_itab> WITH
<key> INITIAL SIZE <size_number>.

Here the <internal_tab_type> specifies a table type for an internal table <internal_tab>
and <line_type_itab> specifies the type for a line of an internal table. In TYPES statement,
you can use the TYPE clause to specify the line type of an internal table as a data type and
LIKE clause to specify the line type as a data object. Specifying a key for an internal table

111

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

is optional and if the user does not specify a key, the SAP system defines a table type with
an arbitrary key.

INITIAL SIZE <size_number> creates an internal table object by allocating an initial
amount of memory to it. In the preceding syntax, the INITIAL SIZE clause reserves a
memory space for size_number table lines. Whenever an internal table object is declared,
the size of the table does not belong to the data type of the table.

Note: Much less memory is consumed when an internal table is populated for the first
time.

Example

Step 1: Open the ABAP Editor by executing the SE38 transaction code. The initial screen
of ABAP Editor appears.

Step 2: In the initial screen, enter a name for the program, select the Source code radio
button and click the Create button to create a new program.

Step 3: In the 'ABAP: Program Attributes' dialog box, enter a short description for the
program in the Title field, select the 'Executable program' option from the Type drop-down
menu in the Attributes group box. Click the Save button.

Step 4: Write the following code in ABAP editor.

REPORT ZINTERNAL_DEMO.

TYPES: BEGIN OF CustomerLine,
Cust_ID TYPE C,

Cust_Name(20) TYPE C,

END OF CustomerLine.

TYPES mytable TYPE SORTED TABLE OF CustomerlLine

WITH UNIQUE KEY Cust_ID.
WRITE:/'The mytable is an Internal Table'.

Step 5: Save, activate and execute the program as usual.

In this example, mytable is an internal table and a unique key is defined on the Cust_ID
field.

The above code produces the following output:

The mytable is an Internal Table.

112

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

42. ABAP —Populating Internal Tables

In internal tables, populating includes features such as selection, insertion and append.
This chapter focuses on INSERT and APPEND statements.

INSERT Statement

INSERT statement is used to insert a single line or a group of lines into an internal table.

Following is the syntax to add a single line to an internal table:

INSERT <work_area_itab> INTO <internal_tab> INDEX <index_num>.

In this syntax, the INSERT statement inserts a new line in the internal_tab internal table.
A new line can be inserted by using the work_area_itab INTO expression before the
internal_tab parameter. When the work_area_itab INTO expression is used, the new line
is taken from the work_area_itab work area and inserted into the internal_tab table.
However, when the work_area_itab INTO expression is not used to insert a line, the line
is taken from the header line of the internal_tab table.

When a new line is inserted in an internal table by using the INDEX clause, the index
number of the lines after the inserted line is incremented by 1. If an internal table contains
<index_num> - 1 lines, the new line is added at the end of the table. When the SAP
system successfully adds a line to an internal table, the SY-SUBRC variable is set to 0.

Example

Following is a sample program that uses the insert statement.

REPORT ZCUSLIST1.
DATA: BEGIN OF itablel OCCURS 4,
F1 LIKE SY-INDEX,
END OF itablel.
DO 4 TIMES.
itablel-F1 = sy-index.
APPEND itablel.
ENDDO.
itablel-F1 = -96.
INSERT itablel INDEX 2.
LOOP AT itablel.
Write / itablel-F1.
ENDLOOP.
LOOP AT itablel Where F1 »>= 3.
itablel-F1 = -78.
INSERT itablel.
ENDLOOP.
Skip.
LOOP AT itablel.
Write / itablel-F1.
ENDLOOP.

113

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

The above code produces the following output:

1
96-
2
3
4
1
96-
2
78-
3
78-
4

In the above example, the DO loop appends 4 rows containing the numbers 1 through 4
to it. The header line component itablel-F1 has been assigned a value of -96. Insert
statement inserts the header line as new row into the body before row 3. The existing row
3 becomes row 4 after the insert. The LOOP AT statement retrieves those rows from the
internal table that have an F1 value greater than or equal to 3. Before each row, Insert
statement inserts a new row from the header line of it. Prior to the insert, the F1
component has been changed to contain -78.

After each insert statement is executed, the system re-indexes all rows below the one
inserted. This introduces overhead when you insert rows near the top of a large internal
table. If you need to insert a block of rows into a large internal table, prepare another
table with the rows to be inserted and use insert lines instead.

When inserting a new row inside itablel inside of a loop at itablel, it doesn’t affect the
internal table instantly. It actually becomes effective on the next loop pass. While inserting
a row after the current row, the table is re-indexed at the ENDLOOP. The sy-tabix is
incremented and the next loop processes the row pointed to by sy-tabix. For instance, if
you are in the second loop pass and you insert a record before row 3. When endloop is
executed, the new row becomes row 3 and the old row 3 becomes row 4 and so on. Sy-
tabix is incremented by 1, and the next loop pass processes the newly inserted record.

APPEND Statement

The APPEND statement is used to add a single row or line to an existing internal table.
This statement copies a single line from a work area and inserts it after the last existing
line in an internal table. The work area can be either a header line or any other field string
with the same structure as a line of an internal table. Following is the syntax of the APPEND
statement that is used to append a single line in an internal table:

APPEND <record_for_itab> TO <internal_tab>.

114

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

In this syntax, the <record_for_itab> expression can be represented by the
<work_area_itab> work area, which is convertible to a line type or by the INITIAL LINE
clause. If the user uses a <work_area_itab> work area, the SAP system adds a new line
to the <internal_tab> internal table and populates it with the content of the work area.
The INITIAL LINE clause appends a blank line that contains the initial value for each field
of the table structure. After each APPEND statement, the SY-TABIX variable contains the
index number of the appended line.

Appending lines to standard and sorted tables with a non-unique key works regardless of
whether the lines with the same key already exist in the table. In other words, duplicate
entries may occur. However, a run-time error occurs if the user attempts to add a duplicate
entry to a sorted table with a unique key or if the user violates the sort order of a sorted
table by appending the lines to it.

Example

REPORT ZCUSLIST1.

DATA: BEGIN OF linv Occurs 0,
Name(20) TYPE C,
ID Number TYPE I,

END OF linv.
DATA tablel LIKE TABLE OF linv.
linv-Name = 'Melissa’.

linv-ID_Number = 105467.

APPEND linv TO tablel.

LOOP AT tablel INTO linv.

Write: / linv-name, linv-ID_Number.
ENDLOOP.

The above code produces the following output:

Melissa 105467

115

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

43. ABAP —Copying Internal Tables

When we read a record from an internal table with a header line, that record is moved
from the table itself into the header line. It is then the header line that our program works
with. The same applies while creating a new record. It is the header line with which you
work with and from which the new record is sent to the table body itself.

To copy the records, we can use a SELECT statement to select all of the records from the
table and then use MOVE statement that will move the records from the original table into
the new internal table into the fields where the names correspond.

Following is the syntax for MOVE statement:

MOVE <table_field> TO <internal_tab_field>.

Example

REPORT ZCUSLIST1.
TABLES: ZCUSTOMERS1.
DATA: BEGIN OF itab®l Occurs 0,
name LIKE ZCUSTOMERS1-name,
dob LIKE ZCUSTOMERS1-dob,
END OF itabel.
Select * FROM ZCUSTOMERS1.
MOVE ZCUSTOMERS1-name TO itab@l-name.
MOVE ZCUSTOMERS1-dob TO itab@l-dob.
ENDSELECT.

Write: / itab@l-name, itab@l-dob.

The above code produces the following output:

MARGARET 02.11.1994

The select loop fills each field one at a time, using the MOVE statement to move the data
from one table’s field to the other. In the above example, MOVE statements were used to
move the contents of the ZCUSTOMERS1 table to the corresponding fields in the internal
table. You can accomplish this action with just one line of code. You can use the MOVE-
CORRESPONDING statement.

Following is the syntax for MOVE-CORRESPONDING statement:

MOVE-CORRESPONDING <table_name> TO <internal_tab>.

It tells the system to move the data from the fields of ZCUSTOMERS1 to their
corresponding fields in itab01.

116

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Example

REPORT ZCUSTOMERLIST.
TABLES: ZCUSTOMERS1.
DATA: Begin of itab®@l occurs 0,
customer LIKE ZCUSTOMERS1-customer,
name LIKE ZCUSTOMERS1-name,
title LIKE ZCUSTOMERS1-title,
dob LIKE ZCUSTOMERS1-dob,
END OF itabe1l.
SELECT * from ZCUSTOMERS1.
MOVE-Corresponding ZCUSTOMERS1 TO itabe1l.
APPEND itabel.
ENDSELECT.
LOOP AT itabel.
Write: / itab@l-name, itab@l-dob.
ENDLOOP.

The above code produces the following output:

MARK 21.05.1981
JAMES 14.08.1977
AURIELE 19.06.1990
STEPHEN 22.07.1985
MARGARET 02.11.1994

This is made possible by the fact that both have matching field names. When making use
of this statement, you need to make sure that both fields have matching data types and
lengths. It has been done here with the LIKE statement previously.

117

MPLYEAEYLEARMNING

'@j Mtutorialspoint

44. ABAP —Reading Internal Tables

We can read the lines of a table by using the following syntax of the READ TABLE
statement:

READ TABLE <internal_table> FROM <work_area_itab>.

In this syntax, the <work_area_itab> expression represents a work area that is compatible
with the line type of the <internal_table> table. We can specify a search key, but not a
table key, within the READ statement by using the WITH KEY clause, as shown in the
following syntax:

READ TABLE <internal_table> WITH KEY = <internal_tab_field>.

Here the entire line of the internal table is used as a search key. The content of the entire
line of the table is compared with the content of the <internal_tab_field> field. If the
values of the <internal_tab_field> field are not compatible with the line type of the table,
these values are converted according to the line type of the table. The search key allows
you to find entries in internal tables that do not have a structured line type, that is, where
the line is a single field or an internal table type.

The following syntax of the READ statement is used to specify a work area or field symbol
by using the COMPARING clause:

READ TABLE <internal_table> <key> INTO <work_area_itab> [COMPARING <F1>
<F2>...<Fn>].

When the COMPARING clause is used, the specified table fields <F1>, <F2>....<Fn> of
the structured line type are compared with the corresponding fields of the work area before
being transported. If the ALL FIELDS clause is specified, the SAP system compares all the
components. When the SAP system finds an entry on the basis of a key, the value of the
SY-SUBRC variable is set to 0. In addition, the value of the SY-SUBRC variable is set to 2
or 4 if the content of the compared fields is not the same or if the SAP system cannot find
an entry. However, the SAP system copies the entry into the target work area whenever
it finds an entry, regardless of the result of the comparison.

Example

REPORT ZREAD_DEMO.

*/Creating an internal table

DATA: BEGIN OF Recordl,

ColP TYPE I,

ColQ TYPE I,

END OF Recordl.

DATA mytable LIKE HASHED TABLE OF Recordl WITH UNIQUE KEY ColP.
DO 6 Times.

118

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Recordl-ColP = SY-INDEX.
Recordl-ColQ = SY-INDEX + 5.
INSERT Recordl INTO TABLE mytable.
ENDDO.

Recordl-ColP
Recordl-ColQ
READ TABLE mytable FROM Recordl INTO Recordl COMPARING ColQ.

4.
12.

WRITE: 'SY-SUBRC =", SY-SUBRC.
SKIP.
WRITE: / Recordl-ColP, Recordl-ColQ.

The above code produces the following output:

SY-SUBRC = 2

4 9

In the above example, mytable is an internal table of the hashed table type, with Recordl
as the work area and ColP as the unique key. Initially, mytable is populated with six lines,
where the ColP field contains the values of the SY-INDEX variable and the ColQ field
contains (SY-INDEX + 5) values.

The Recordl work area is populated with 4 and 12 as values for the ColP and ColQ fields
respectively. The READ statement reads the line of the table after comparing the value of
the ColP key field with the value in the Recordl work area by using the COMPARING clause,
and then copies the content of the read line in the work area. The value of the SY-SUBRC
variable is displayed as 2 because when the value in the ColP field is 4, the value in the
ColQ is not 12, but 9.

119

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

45. ABAP — Deleting Internal Tables

The DELETE statement is used to delete one or more records from an internal table. The
records of an internal table are deleted either by specifying a table key or condition or by
finding duplicate entries. If an internal table has a non-unique key and contains duplicate
entries, the first entry from the table is deleted.

Following is the syntax to use the DELETE statement to delete a record or line from an
internal table:

DELETE TABLE <internal_table> FROM <work_area_itab>.

In the above syntax, the <work_area_itab> expression is a work area and it should be
compatible with the type of the <internal_table> internal table. The delete operation is
performed on the basis of a default key that could be taken from the work area
components.

You may also specify a table key explicitly in the DELETE TABLE statement by using the
following syntax:

DELETE TABLE <internal_table> WITH TABLE KEY <K1> = <Fl>...

<Kn> = <Fn>.

In this syntax, <F1>, <F2>....<Fn> are the fields of an internal table and <K1>,
<K2>....<Kn> are the key fields of the table. The DELETE statement is used to delete the
records or lines of the <internal_table> table based on the expressions <K1> = <F1>,
<K2> = <F2>...<Kn> = <Fn>.

Note: If the data types of the <F1>, <F2>....<Fn> fields are not compatible with the
<K1>, <K2>...<Kn> key fields then the SAP system automatically converts them into the
compatible format.

Example

REPORT ZDELETE_DEMO.

DATA: BEGIN OF Linel,

ColP TYPE I,

ColQ TYPE I,

END OF Linel.

DATA mytable LIKE HASHED TABLE OF Linel

WITH UNIQUE KEY ColP.

DO 8 TIMES.

Linel-ColP SY-INDEX.

Linel-ColQ = SY-INDEX + 4.

INSERT Linel INTO TABLE mytable.
ENDDO.

Linel-ColP = 1.

DELETE TABLE mytable: FROM Linel,
WITH TABLE KEY ColP = 3.

120

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

LOOP AT mytable INTO Linel.
WRITE: / Linel-ColP, Linel-ColQ.
ENDLOOP.

The above code produces the following output:

2 6
4 8
5 9
6 10
7 11
8 12

In this example, mytable has two fields, ColP and ColQ. Initially, mytable is populated with
eight lines, where the ColP contains the values 1, 2, 3, 4, 5, 6, 7 and 8. The ColQ contains
the values 5, 6, 7, 8,9, 10, 11 and 12 because the ColP values are incremented by 4 every
time.

The DELETE statement is used to delete the lines from mytable where the value of the
ColP key field is either 1 or 3. After deletion, the ColP field of mytable contains the values
2,4,5,6,7 and 8, as shown in the output. The ColQ field contains the values 6, 8, 9, 10,
11 and 12.

121

MPLYEAEYLEARMNING

'@j Mtutorialspoint

46. ABAP —Object Orientation

Object orientation simplifies software design to make it easier to understand, maintain,
and reuse. Object Oriented Programming (OOP) represents a different way of thinking
in writing software. The beauty of OOP lies in its simplicity. The expressiveness of OOP
makes it easier to deliver quality software components on time.

As solutions are designed in terms of real-world objects, it becomes much easier for
programmers and business analysts to exchange ideas and information about a design
that uses a common domain language. These improvements in communication help to
reveal hidden requirements, identify risks, and improve the quality of software being
developed. The object-oriented approach focuses on objects that represent abstract or
concrete things of the real world. These objects are defined by their character and
properties that are represented by their internal structure and their attributes (data). The
behavior of these objects is described by methods (i.e. functionality).

Let’'s compare the procedural and object oriented programming:

Procedure Oriented

Features Object Oriented approach
approach
Emphasis is on things that does
Emphasis Emphasis is on tasks. those tasks.
Programs are organized into
Programs can be divided into | classes and objects and the
Modularization smaller programs known as | functionalities are embedded

functions. into methods of a class.

Data can be hidden and can’t be

Most of the functions share
accessed by external sources.

Data security global data

New data and functions can be
added effortlessly as and when
required.

This is more time consuming
Extensibility to modify and extend the
existing functionality.

ABAP was initially developed as a procedural language (just similar to earlier procedural
programming language like COBOL). But ABAP has now adapted the principles of object
oriented paradigms with the introduction of ABAP Objects. The object-oriented concepts
in ABAP such as class, object, inheritance, and polymorphism, are essentially the same as
those of other modern object-oriented languages such as Java or C++.

122

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

As object orientation begins to take shape, each class assumes specific role assignments.
This division of labor helps to simplify the overall programming model, allowing each class
to specialize in solving a particular piece of the problem at hand. Such classes have high
cohesion and the operations of each class are closely related in some intuitive way.

The key features of object orientation are:

e Effective programming structure.

e Real-world entities can be modeled very well.
e Stress on data security and access.

e Minimizes code redundancy.

e Data abstraction and encapsulation.

123

MPLYEAEYLEARMNING

'@j Mtutorialspoint

47. ABAP-—Objects

An object is a special kind of variable that has distinct characteristics and behaviors. The
characteristics or attributes of an object are used to describe the state of an object, and
behaviors or methods represent the actions performed by an object.

An object is a pattern or instance of a class. It represents a real-world entity such as a
person or a programming entity like variables and constants. For example, accounts and
students are examples of real-world entities. But hardware and software components of a
computer are examples of programming entities.

An object has the following three main characteristics:

e Has a state.
e Has a unique identity.
e« May or may not display the behavior.

The state of an object can be described as a set of attributes and their values. For example,
a bank account has a set of attributes such as Account Number, Name, Account Type,
Balance, and values of all these attributes. The behavior of an object refers to the changes
that occur in its attributes over a period of time.

Each object has a unique identity that can be used to distinguish it from other objects.
Two objects may exhibit the same behavior and they may or may not have the same state,
but they never have the same identity. Two persons may have the same name, age, and
gender but they are not identical. Similarly, the identity of an object will never change
throughout its lifetime.

Objects can interact with one another by sending messages. Objects contain data and
code to manipulate the data. An object can also be used as a user-defined data type with
the help of a class. Objects are also called variables of the type class. After defining a
class, you can create any number of objects belonging to that class. Each object is
associated with the data of the type class with which it has been created.

Creating an Object

The object creation usually includes the following steps:

o Creating a reference variable with reference to the class. The syntax for which is:

DATA: <object_name> TYPE REF TO <class_name>.

o Creating an object from the reference variable. The syntax for which is:

CREATE Object: <object_name>.

124

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Example

REPORT ZDEMO_OBIJECT.

CLASS Classl Definition.

Public Section.

DATA: textl1(45) VALUE 'ABAP Objects.'.
METHODS: Displayl.

ENDCLASS.

CLASS Classl Implementation.

METHOD Displayl.

Write:/ 'This is the Display method.'.
ENDMETHOD.

ENDCLASS.

START-OF-SELECTION.

DATA: Classl TYPE REF TO Classl.
CREATE Object: Classl.

Write:/ Classl->textl.

CALL METHOD: Classl->Displayl.

The above code produces the following output:

ABAP Objects.

This is the Display method.

125

'@j Mtutorialspoint

EIMPLYEAEYLEARMNINEG

48. ABAP—Classes

A class is used to specify the form of an object and it combines data representation and
methods for manipulating that data into one neat package. The data and functions within
a class are called members of the class.

Class Definition and Implementation

When you define a class, you define a blueprint for a data type. This doesn't actually define
any data, but it does define what the class name means, what an object of the class will
consist of, and what operations can be performed on such an object. That is, it defines the
abstract characteristics of an object, such as attributes, fields, and properties.

The following syntax shows how to define a class:

CLASS <class_name> DEFINITION.

ENDCLASS.

A class definition starts with the keyword CLASS followed by the class name, DEFINITION
and the class body. The definition of a class can contain various components of the class
such as attributes, methods, and events. When we declare a method in the class
declaration, the method implementation must be included in the class implementation.
The following syntax shows how to implement a class:

CLASS <class_name> IMPLEMENTATION.

ENDCLASS.

Note: Implementation of a class contains the implementation of all its methods. In ABAP
Objects, the structure of a class contains components such as attributes, methods, events,
types, and constants.

126

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Attributes

Attributes are data fields of a class that can have any data type such as C, I, F, and N.
They are declared in the class declaration. These attributes can be divided into 2
categories: instance and static attributes. An instance attribute defines the instance
specific state of an object. The states are different for different objects. An instance
attribute is declared by using the DATA statement.

Static attributes define a common state of a class that is shared by all the instances of
the class. That is, if you change a static attribute in one object of a class, the change is
visible to all other objects of the class as well. A static attribute is declared by using the
CLASS-DATA statement.

Methods

A method is a function or procedure that represents the behavior of an object in the class.
The methods of the class can access any attribute of the class. The definition of a method
can also contain parameters, so that you can supply the values to these parameters when
methods are called. The definition of a method is declared in the class declaration and
implemented in the implementation part of a class. The METHOD and ENDMETHOD
statements are used to define the implementation part of a method. The following syntax
shows how to implement a method:

METHOD <m_name>.

ENDMETHOD .

In this syntax, <m_name> represents the name of a method. Note: You can call a method
by using the CALL METHOD statement.

Accessing Attributes and Methods

Class components can be defined in public, private, or protected visibility sections that
control how these components could be accessed. The private visibility section is used to
deny access to components from outside of the class. Such components can only be
accessed from inside the class such as a method.

Components defined in the public visibility section can be accessed from any context. By
default all the members of a class would be private. Practically, we define data in private
section and related methods in public section so that they can be called from outside of
the class as shown in the following program.

e The attributes and methods declared in Public section in a class can be accessed
by that class and any other class, sub-class of the program.

e When the attributes and methods are declared in Protected section in a class, those
can be accessed by that class and sub classes (derived classes) only.

e When the attributes and methods are declared in Private section in a class, those
can be accessed by only that class and not by any other class.

127

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

Example

Report ZAccessl.
CLASS classl Definition.
PUBLIC Section.
Data: textl Type char25 Value 'Public Data'.
Methods methl.
PROTECTED Section.
Data: text2 Type char25 Value 'Protected Data’.
PRIVATE Section.
Data: text3 Type char25 Value 'Private Data'.
ENDCLASS.
CLASS classl Implementation.
Method methl.
Write: / 'Public Method:',

/ textl,
/ text2,
/ text3.
Skip.
EndMethod.
ENDCLASS.

Start-Of-Selection.
Data: Objectx Type Ref To classl.
Create Object: Objectx.
CALL Method: Objectx->methl.
Write: / Objectx->textl.

The above code produces the following output:

Public Method:
Public Data
Protected Data

Private Data

Public Data

Static Attributes

A Static attribute is declared with the statement CLASS-DATA. All the objects or instances
can use the static attribute of the class. Static attributes are accessed directly with the
help of class name like class_name=>name_1 = 'Some Text'.

Example

Following is a program where we want to print a text with line number 4 to 8 times. We
define a class classl and in the public section we declare CLASS-DATA (static attribute)
and a method. After implementing the class and method, we directly access the static
attribute in Start-Of-Selection event. Then we just create the instance of the class and call
the method.

128

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

Report ZStaticl.
CLASS classl Definition.
PUBLIC Section.

CLASS-DATA: namel Type char45,

datal Type I.
Methods: methl.
ENDCLASS.
CLASS classl Implementation.
Method methl.
Do 4 Times.
datal = 1 + datal.
Write: / datal, namel.
EndDo.
Skip.
EndMethod.
ENDCLASS.
Start-0f-Selection.

classl=>namel = 'ABAP Object Oriented Programming'.

classl=>datal = 0.

Data: Objectl Type Ref To classl,
Object2 Type Ref To classl.
Create Object: Objectl, Object2.

CALL Method: Objectl->methil,
Object2->methl.

The above code produces the following output:

Atatic Attributes

Static Attributes

ABAT
ABATP
ABAT
ABATP

[T I % B

ABAT
ABAT
ABAT
ABAT

0] =1 @

Object
Object
Object
Object

Object
Object
Object
Object

Oriented
Oriented
Oriented
Oriented

Oriented
Oriented
Oriented
Oriented

Programming
Programming
Programming
Programming

Programming
Programming
Programming
Programming

Constructors

Constructors are special methods that are called automatically, either while creating an
object or accessing the components of a class. Constructor gets triggered whenever an
object is created, but we need to call a method to trigger the general method. In the
following example, we have declared two public methods methodl and constructor. Both

MPLYEAEYLEARMNING

'@j Mtutorialspoint

129

SAP ABAP

these methods have different operations. While creating an object of the class, the

constructor method triggers its operation.

Example

Report ZConstructorl.
CLASS classl Definition.
PUBLIC Section.
Methods: methodl, constructor.
ENDCLASS.
CLASS classl Implementation.
Method methodl.
Write: / 'This is Method1l'.
EndMethod.
Method constructor.
Write: / 'Constructor Triggered'.
EndMethod.
ENDCLASS.
Start-0Of-Selection.
Data Objectl Type Ref To classl.
Create Object Objectl.

The above code produces the following output:

Constructor Triggered

ME Operator in Methods

When you declare a variable of any type in public section of a class, you can use it in any
other implementation. A variable can be declared with an initial value in public section.
We may declare the variable again inside a method with a different value. When we write
the variable inside the method, the system will print the changed value. To reflect the

previous value of the variable, we have to use ‘ME’ operator.

In this program, we have declared a public variable textl and initiated with a value. We
have declared the same variable again, but instantiated with different value. Inside the
method, we are writing that variable with *ME’ operator to get the previously initiated

value. We get the changed value by declaring directly.

Example

Report ZMEOperatorl.
CLASS class1 Definition.
PUBLIC Section.

Data textl Type char25 Value 'This is CLASS Attribute'.

Methods methodl.
ENDCLASS.
CLASS classl Implementation.
Method methodl.

Data textl Type char25 Value 'This is METHOD Attribute’.

Write: / ME->textl,
/ textl.

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

130

SAP ABAP

ENDMethod.
ENDCLASS.
Start-0Of-Selection.
Data objectx Type Ref To classl.
Create Object objectx.
CALL Method objectx->methodl.

The above code produces the following output:

This is CLASS Attribute
This is METHOD Attribute

131

MPLYEAEYLEARMNING

w Mtutorialspoint

49. ABAP—Inheritance

One of the most important concepts in object oriented programming is that of inheritance.
Inheritance allows us to define a class in terms of another class, which makes it easier to
create and maintain an application. This also provides an opportunity to reuse the code
functionality and fast implementation time.

When creating a class, instead of writing completely new data members and methods, the
programmer can designate that the new class should inherit the members of an existing
class. This existing class is called the base class or super class, and the new class is
referred to as the derived class or sub class.

e An object of one class can acquire the properties of another class.

e Derived class inherits the data and methods of a super class. However, they can
overwrite methods and also add new methods.

¢ The main advantage of inheritance is reusability.

The inheritance relationship is specified using the ‘INHERITING FROM' addition to
the class definition statement.

Following is the syntax:

CLASS <subclass> DEFINITION INHERITING FROM <superclass>.

Example

Report ZINHERITAN_1.

CLASS Parent Definition.

PUBLIC Section.

Data:

w_public(25) Value 'This is public data’'.
Methods: ParentM.

ENDCLASS.

CLASS Child Definition Inheriting From Parent.
PUBLIC Section.

Methods: ChildM.

ENDCLASS.

CLASS Parent Implementation.

Method ParentM.

Write /: w_public.

EndMethod.

ENDCLASS.

CLASS Child Implementation.

Method ChildM.

Skip.

Write /: 'Method in child class', w_public.

132

@ tutorialspoint

EIMPLYEAEYLEARMING

EndMethod.

ENDCLASS.

Start-of-selection.

Data:

Parent Type Ref To Parent,
Child Type Ref To Child.
Create Object: Parent, Child.
Call Method:

Parent->ParentM,
child->ChildM.

SAP ABAP

The above code produces the following output:

This is public data
Method in child class

This is public data

Access Control and Inheritance

A derived class can access all the non-private members of its base class. Thus super class
members that should not be accessible to the member functions of sub classes should be
declared private in the super class. We can summarize the different access types according

to who can access them in the following way:

Access Public Protected Private
Same class Yes Yes Yes
Derived class Yes Yes No
Outside class Yes No No

When deriving a class from a super class, it can be inherited through public, protected or
private inheritance. The type of inheritance is specified by the access specifier as explained
above. We hardly use protected or private inheritance, but public inheritance is commonly
used. The following rules are applied while using different types of inheritance.

e Public Inheritance: When deriving a class from a public super class, public
members of the super class become public members of the sub class and protected
members of the super class become protected members of the sub class. Super
class's private members are never accessible directly from a sub class, but can be
accessed through calls to the public and protected members of the super class.

e Protected Inheritance: When deriving from a protected super class, public and
protected members of the super class become protected members of the sub class.

e Private Inheritance: When deriving from a private super class, public and
protected members of the super class become private members of the sub class.

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

133

SAP ABAP

Redefining Methods in Sub Class

The methods of the super class can be re-implemented in the sub class. Few rules of
redefining methods:

e The redefinition statement for the inherited method must be in the same section
as the definition of the original method.

e If you redefine a method, you do not need to enter its interface again in the
subclass, but only the name of the method.

e Within the redefined method, you can access components of the direct super class
using the super reference.

e The pseudo reference super can only be used in redefined methods.

Example

Report Zinheri_Redefine.
CLASS super_class Definition.
Public Section.
Methods: Additionl importing g_a TYPE I
g b TYPE I
exporting g c TYPE I.
ENDCLASS.
CLASS super_class Implementation.
Method Additionl.
gc=ga+gh.
EndMethod.
ENDCLASS.
CLASS sub_class Definition Inheriting From super_class.
Public Section.
METHODS: Additionl Redefinition.
ENDCLASS.
CLASS sub_class Implementation.
Method Additionl.
g c=ga+gb+ 10.
EndMethod.
ENDCLASS.
Start-0Of-Selection.
Parameters: P_a Type I, P_b TYPE I.
Data: H_Additionl TYPE I.
Data: H_Sub TYPE I.
Data: Refl TYPE Ref TO sub_class.
Create Object Refl.
Call Method Refl->Additionl exporting g a = P_a
gb=PDb
Importing g_c = H_Additionl.
Write:/ H_Additionl.

134

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

After executing F8, if we enter the values 9 and 10, the above code produces the following

output:
F_A& 9
P B 10

Redefinition Demo

29

135

MPLYEAEYLEARMNING

'@j Mtutorialspoint

50. ABAP—Polymorphism

The term polymorphism literally means ‘many forms’. From an object-oriented
perspective, polymorphism works in conjunction with inheritance to make it possible for
various types within an inheritance tree to be used interchangeably. That is, polymorphism
occurs when there is a hierarchy of classes and they are related by inheritance. ABAP
polymorphism means that a call to a method will cause a different method to be executed
depending on the type of object that invokes the method.

The following program contains an abstract class 'class_prgm', 2 sub classes
(class_procedural and class_00), and a test driver class 'class_type_approach'. In this
implementation, the class method 'start' allow us to display the type of programming and
its approach. If you look closely at the signature of method 'start', you will observe that it
receives an importing parameter of type class_prgm. However, in the Start-Of-Selection
event, this method has been called at run-time with objects of type class_procedural and
class_0O0.

Example

Report ZPolymorphisml.

CLASS class_prgm Definition Abstract.
PUBLIC Section.

Methods: prgm_type Abstract,
approachl Abstract.

ENDCLASS.

CLASS class_procedural Definition
Inheriting From class_prgm.
PUBLIC Section.

Methods: prgm_type Redefinition,
approachl Redefinition.

ENDCLASS.

CLASS class_procedural Implementation.
Method prgm_type.

Write: 'Procedural programming'.
EndMethod.

Method approachl.

Write: 'top-down approach'.
EndMethod.

ENDCLASS.

CLASS class_00 Definition
Inheriting From class_prgm.
PUBLIC Section.

Methods: prgm_type Redefinition,
approachl Redefinition.

ENDCLASS.

CLASS class_00 Implementation.
Method prgm_type.

Write: 'Object oriented programming'.
EndMethod.

Method approachl.

Write: 'bottom-up approach'.

136

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

EndMethod.

ENDCLASS.

CLASS class_type_approach Definition.
PUBLIC Section.

CLASS-METHODS :

start Importing classl_prgm

Type Ref To class_prgm.

ENDCLASS.

CLASS class_type_approach IMPLEMENTATION.
Method start.

CALL Method classl_prgm->prgm_type.
Write: 'follows'.

CALL Method classl_prgm->approachl.
EndMethod.

ENDCLASS.

Start-0Of-Selection.

Data: class_1 Type Ref To class_procedural,
class_2 Type Ref To class_00.

Create Object class_1.

Create Object class_2.

CALL Method class_type_approach=>start

Exporting

classl prgm = class_1.

New-Line.

CALL Method class_type_approach=>start
Exporting

classl prgm = class_2.

The above code produces the following output:

Procedural programming follows top-down approach

Object oriented programming follows bottom-up approach

ABAP run-time environment performs an implicit narrowing cast during the assignment of
the importing parameter classl_prgm. This feature helps the 'start' method to be
implemented generically. The dynamic type information associated with an object
reference variable allows the ABAP run-time environment to dynamically bind a method
call with the implementation defined in the object pointed to by the object reference
variable. For instance, the importing parameter 'classl_prgm' for method 'start’' in the
'class_type_approach' class refers to an abstract type that could never be instantiated on
its own.

Whenever the method is called with a concrete sub class implementation such as
class_procedural or class_0O, the dynamic type of the classl_prgm reference parameter
is bound to one of these concrete types. Therefore, the calls to methods 'prgm_type' and
'approachl’ refer to the implementations provided in the class_procedural or class_0O sub
classes rather than the undefined abstract implementations provided in class 'class_prgm'.

137

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

51. ABAP-—Encapsulation

Encapsulation is an Object Oriented Programming (OOP) concept that binds together data
and functions that manipulate the data, and keeps both safe from outside interference and
misuse. Data encapsulation led to the important OOP concept of data hiding. Encapsulation
is @ mechanism of bundling the data and the functions that use them, and data abstraction
is @ mechanism of exposing only the interfaces and hiding the implementation details from
the user.

ABAP supports the properties of encapsulation and data hiding through the creation of
user-defined types called classes. As discussed earlier, a class can contain private,
protected and public members. By default, all items defined in a class are private.

Encapsulation by Interface

Encapsulation actually means one attribute and method could be modified in different
classes. Hence data and method can have different form and logic that can be hidden to
separate class.

Let's consider encapsulation by interface. Interface is used when we need to create one
method with different functionality in different classes. Here the name of the method need
not be changed. The same method will have to be implemented in different class
implementations.

Example

The following program contains an Interface inter_1. We have declared attribute and a
method method1l. We have also defined two classes like Class1 and Class2. So we have to
implement the method ‘methodl’ in both of the class implementations. We have
implemented the method ‘methodl’ differently in different classes. In the start-of-
selection, we create two objects Objectl and Object2 for two classes. Then, we call the
method by different objects to get the function declared in separate classes.

Report ZEncapl.

Interface inter_1.
Data textl Type char35.
Methods methodl.

EndInterface.
CLASS Classl Definition.
PUBLIC Section.
Interfaces inter_1.
ENDCLASS.
CLASS Class2 Definition.
PUBLIC Section.
Interfaces inter_1.
ENDCLASS.
CLASS Classl Implementation.
Method inter_l~methodl.
inter_1~textl = 'Class 1 Interface method'.

138

@ tutorialspoint

EIMPLYEAEYLEARMING

Write / inter_l~textl.
EndMethod.
ENDCLASS.
CLASS Class2 Implementation.
Method inter_l~methodl.

Write / inter_l~textl.
EndMethod.
ENDCLASS.
Start-0Of-Selection.
Data: Objectl Type Ref To Classl,
Object2 Type Ref To Class2.
Create Object: Objectl, Object2.
CALL Method: Objectl->inter_1~method1l,
Object2->inter_l~methodl.

inter_1~textl = 'Class 2 Interface method'.

SAP ABAP

The above code produces the following output:

Class 1 Interface method

Class 2 Interface method

Encapsulated classes do not have a lot of dependencies on the outside world. Moreover,
the interactions that they do have with external clients are controlled through a stabilized
public interface. That is, an encapsulated class and its clients are loosely coupled. For the
most part, classes with well-defined interfaces can be plugged into another context. When

designed correctly, encapsulated classes become reusable software assets.

Designing Strategy

Most of us have learned through bitter experience to make class members private by
default unless we really need to expose them. That is just good encapsulation. This wisdom
is applied most frequently to data members and it also applies equally to all members.

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

139

52. Interfaces

Similar to classes in ABAP, interfaces act as data types for objects. The components of
interfaces are same as the components of classes. Unlike the declaration of classes, the
declaration of an interface does not include the visibility sections. This is because the
components defined in the declaration of an interface are always integrated in the public
visibility section of the classes.

Interfaces are used when two similar classes have a method with the same name, but the
functionalities are different from each other. Interfaces might appear similar to classes,
but the functions defined in an interface are implemented in a class to extend the scope
of that class. Interfaces along with the inheritance feature provide a base for
polymorphism. This is because a method defined in an interface can behave differently in
different classes.

Following is the general format to create an interface:

INTERFACE <intf_name>.

METHODS.....
CLASS-METHODS.....
ENDINTERFACE.

In this syntax, <intf_name> represents the name of an interface. The DATA and CLASS-
DATA statements can be used to define the instance and static attributes of the interface
respectively. The METHODS and CLASS-METHODS statements can be used to define the
instance and static methods of the interface respectively. As the definition of an interface
does not include the implementation class, it is not necessary to add the DEFINITION
clause in the declaration of an interface.

Note: All the methods of an interface are abstract. They are fully declared including their
parameter interface, but not implemented in the interface. All the classes that want to use
an interface must implement all the methods of the interface. Otherwise, the class
becomes an abstract class.

We use the following syntax in the implementation part of the class:

INTERFACES <intf_name>.

In this syntax, <intf_name> represents the name of an interface. Note that this syntax
must be used in the public section of the class.

140

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

The following syntax is used to implement the methods of an interface inside the
implementation of a class:

METHOD <intf_name~method_m>.
<statements>.

ENDMETHOD.

In this syntax, <intf_name~method_m> represents the fully declared name of a method
of the <intf_name> interface.

Example

Report ZINTERFACE1.
INTERFACE my_interfacel.
Methods msg.
ENDINTERFACE.

CLASS num_counter Definition.
PUBLIC Section.

INTERFACES my_interfacel.
Methods add_number.

PRIVATE Section.

Data num Type I.

ENDCLASS.

CLASS num_counter Implementation.
Method my_interfacel~msg.

Write: / 'The number is', num.
EndMethod.

Method add_number.

ADD 7 TO num.

EndMethod.

ENDCLASS.

CLASS drivel Definition.

PUBLIC Section.

INTERFACES my_interfacel.
Methods speedl.

PRIVATE Section.

Data wheell Type I.

ENDCLASS.

CLASS drivel Implementation.
Method my_interfacel~msg.

Write: / 'Total number of wheels is', wheell.
EndMethod.

Method speedl.

Add 4 To wheell.

EndMethod.

ENDCLASS.

Start-0Of-Selection.

Data objectl Type Ref To num_counter.
Create Object objectl.

CALL Method objectl->add_number.

141

'@j Mtutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

CALL Method objectl->my_interfacel~msg.
Data object2 Type Ref To drivel.

Create Object object2.

CALL Method object2->speedl.

CALL Method object2->my_interfacel~msg.

The above code produces the following output:

The number is 7

Total number of wheels is 4

In the above example, my_.interfacel is the name of an interface that contains the 'msg'
method. Next, two classes, num_counter and drivel are defined and implemented. Both
these classes implement the 'msg' method and also specific methods that define the
behavior of their respective instances, such as the add_number and speed1 methods.

Note: The add_number and speedl methods are specific to the respective classes.

142
'@j Mtutorialspoint

EIMPLYEAEYLEARNING

53. Object Events

An event is a set of outcomes that are defined in a class to trigger the event handlers in
other classes. When an event is triggered, we can call any number of event handler
methods. The link between a trigger and its handler method is actually decided dynamically
at run-time.

In a normal method call, a calling program determines which method of an object or a
class needs to be called. As fixed handler method is not registered for every event, in case
of event handling, the handler method determines the event that needs to be triggered.

An event of a class can trigger an event handler method of the same class by using the
RAISE EVENT statement. For an event, the event handler method can be defined in the
same or different class by using the FOR EVENT clause, as shown in the following syntax:

FOR EVENT <event_name> OF <class_name>.

Similar to the methods of a class, an event can have parameter interface but it has only
output parameters. The output parameters are passed to the event handler method by
the RAISE EVENT statement that receives them as input parameters. An event is linked to
its handler method dynamically in a program by using the SET HANDLER statement.

When an event is triggered, appropriate event handler methods are supposed to be
executed in all the handling classes.

Example

REPORT ZEVENT1.

CLASS CL_main DEFINITION.

PUBLIC SECTION.

DATA: numl TYPE I.

METHODS: PRO IMPORTING num2 TYPE I.
EVENTS: CUTOFF.

ENDCLASS.

CLASS CL_eventhandler DEFINITION.
PUBLIC SECTION.

METHODS: handling_CUTOFF

FOR EVENT CUTOFF OF CL_main.
ENDCLASS.

START-OF-SELECTION.

DATA: mainl TYPE REF TO CL_main.
DATA: eventhandlerl TYPE REF TO CL_eventhandler.
CREATE OBJECT mainl.

CREATE OBJECT eventhandlerl.

SET HANDLER eventhandlerl->handling CUTOFF FOR mainl.
mainl->PRO(4).

CLASS CL_main IMPLEMENTATION.
METHOD PRO.

numl = num2.

IF num2 >= 2.

RAISE EVENT CUTOFF.

143

@ tutorialspoint

EIMPLYEAEYLEARMING

ENDIF.

ENDMETHOD.

ENDCLASS.

CLASS CL_eventhandler IMPLEMENTATION.
METHOD handling_ CUTOFF.

WRITE: 'Handling the CutOff'.

WRITE: / 'Event has been processed’.

ENDMETHOD .
ENDCLASS.

SAP ABAP

The above code produces the following output:

Handling the CutOff
Event has been processed

w Mtutorialspoint

EIMPLYEAEYLEARMNINEG

144

54. ABAP —Report Programming

A report is a presentation of data in an organized structure. Many database management
systems include a report writer that enables you to design and generate reports. SAP
applications support report creation.

A classical report is created by using the output data in the WRITE statement inside a loop.
They do not contain any sub-reports. SAP also provides some standard reports such as
RSCLTCOP that is used to copy tables across clients and RSPARAM that is used to display
instance parameters.

These reports consist of only one screen as an output. We can use various events such as
INITIALIZATON & TOP-OF-PAGE to create a classical report, and each event has its own
importance during the creation of a classical report. Each of these events is associated to
a specific user action and is triggered only when the user performs that action.

Following is a table describing the events and descriptions:

Event Description

INITIALIZATON Triggered before displaying the selection screen.

Triggered after processing of the user input on the
selection screen. This event verifies the user input
AT SELECTION-SCREEN prior to the execution of a program. After processing
the user input, the selection screen remains in the
active mode.

Triggered only after the processing of the selection
START-OF-SELECTION screen is over; that is, when the user clicks the
Execute icon on the selection screen.

Triggered after the last statement in the START-OF-

END-OF-SELECTION SELECTON event is executed.

Triggered by the first WRITE statement to display the
TOP-OF-PAGE data on a new page.

Triggered to display the text at the end of a page in
a report. Note, that this event is the last event while
END-OF-PAGE creating a report, and should be combined with the
LINE-COUNT clause of the REPORT statement.

145

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Example

Let's create a classical report. We will display the information stored in the standard
database MARA (contains general material data) by using a sequence of statements in
ABAP editor.

REPORT ZREPORT2
LINE-SIZE 75
LINE-COUNT 30(3)
NO STANDARD PAGE HEADING.
Tables: MARA.
TYPES: Begin of itab,
MATNR TYPE MARA-MATNR,
MBRSH TYPE MARA-MBRSH,
MEINS TYPE MARA-MEINS,
MTART TYPE MARA-MTART,
End of itab.
DATA: wa_ma TYPE itab,
it_ma TYPE STANDARD TABLE OF itab.
SELECT-OPTIONS: MATS FOR MARA-MATNR OBLIGATORY.
INITIALIZATION.
MATS-LOW = '1".
MATS-HIGH = '500"'.
APPEND MATS.
AT SELECTION-SCREEN.
IF MATS-LOW = " '.
MESSAGE 1000 (ZKMESSAGE).
ELSEIF MATS-HIGH = ' '.
MESSAGE 1001 (ZKMESSAGE).
ENDIF.
TOP-OF -PAGE.
WRITE:/ 'CLASSICAL REPORT CONTAINING GENERAL MATERIAL DATA

FROM THE TABLE MARA' COLOR 7.

ULINE.

WRITE:/ 'MATERIAL' COLOR 1,

24 "INDUSTRY' COLOR 2,

38 'UNITS' COLOR 3,

53 'MATERIAL TYPE' COLOR 4.

ULINE.

END-OF -PAGE.

START-OF-SELECTION.

SELECT MATNR MBRSH MEINS MTART FROM MARA

INTO TABLE it_ma WHERE MATNR IN MATS.

LOOP AT it_ma into wa_ma.

WRITE:/ wa_ma-MATNR,

25 wa_ma-MBRSH,

40 wa_ma-MEINS,

55 wa_ma-MTART.

ENDLOOP.

END-OF -SELECTION.

ULINE.

WRITE:/ 'CLASSICAL REPORT HAS BEEN CREATED' COLOR 7.

146

'@j Mtutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

ULINE.
SKIP.

The above code produces the following output containing the general material data from
the standard table MARA:

CLAS3TCAL REFORT CONTATHNING GENERAL MATERTAL DaATA FROM THE TABLE MiRd
MATERTAL INDITSTEY THNITS MALTERTAL TY¥FPE
23 1 Ei ROH

38 M FC HiLE

43 1 HE. Halry

58 ul PC HIEE

a9 ul FC HIEE

a¥s] M FC FHMT

=] M FC DIEN

a8 ul PC FERT

g9 ul FC FERT

Eks] M FC HiLE

170 M FC NLAG

173 M FC NLAG

135 ul PC NLAG

283 M FC HiLE

353 M FC Hatra

359 M FC Halry
CLASSICAL FEPORT HAS EEEN CREATED

147

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

55. ABAP-Dialog Programming

Dialog programming deals with the development of multiple objects. All these objects are
linked hierarchically to the main program and they are executed in a sequence. Dialog
program development makes use of tools in the ABAP workbench. These are the same
tools used in standard SAP application development.

Here are the main components of dialog programs:

e Screens

e Module pools
e Subroutines
e Menus

e Transactions

The Toolset
Central Component Tool Transaction
all Components Chject Browser SESBO

Tools = ABAP Workbench =
Cbject Browser

Screen Screen Painter SES1

Tools = ABRAP Workbench =
Screen Painter

ABAPA4 Module Pool ABAPA4 Editor SE3E

Tools = ABAP Workbench =
ABAPA4 Editor

Dictionary Objects ABAP/4 Dictionary SE11

{tables, fields, etc.) Tools = ABAP Workbench =
ABAP/4 Dictionary

rMerL Menu Painter SE41

Tools = ABAP Workbench =
Menu Painter

Transaction Maintain Transaction SEQ3

Tools = ABAP Workbench =
Development =

Other Tools = Transactions

Dialog programs should be developed by the object browser (transaction: SE80) so that
all objects become linked to the main program without having to explicitly point each
object. Advanced navigation techniques enhance the process of moving from one object
to the other.

Screens are made up of screen attributes, screen layout, fields and flow logic. The module
pool consists of modularized syntax that is placed inside include programs of the dialog
program. These modules can be invoked by the flow logic, which is processed by the dialog
processor.

148

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Creating a New Dialog Program

Step 1: Within the transaction SE80, select ‘Program’ from the dropdown and enter a Z
name for your custom SAP program as ‘ZSCREENEX’.

Step 2: Press Enter, choose ‘With TOP INCL’ and click the ‘Yes’ button.

[Z workbench Edit Goto UtilitiesiM) Erwironment System Help

& | B @@ CHE DDOoH

Object Navigator
= = B [TYEdt Object

[@’MIME Repository]

|ﬁ Repositary Browser |
E [= Create Program

E

Program Z5CREENEX

W ith TOP TMCL.

e L= LF]E]) (=) R E

Step 3: Enter a name for your top include as *ZSCRTOP’ and clilck the green tick mark.

Step 4: Within the attributes screen, simply enter a title and click the save button.

Adding a Screen to the Dialog Program

Step 1: To add a screen to the program, right-click on the program name and select the
options Create - Screen.

Step 2: Enter a screen number as '0211' and click the green tick mark.

149

' tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Screen number 211 | Mew(Revised)

Attributes Elerment list Flow logic

Short Description Adding a screen to dialog program
Criginal Language: EN English Package
Last changed onfat 0o:00:00
Last Generation 00:00: 00
Screen Type Settings
& MNormal Hold Data
T ISubscreen Sywitch Off Runtirme Cormpress
“Modal dialog box Ternplate - non-executable

Haold Scroll Position

Without Application Toolbar

Step 3: In the next screen, enter a short title, set to normal screen type and click the
save button on the top application toolbar.

Screen Layout and Adding ‘Hello World’ Text

Step 1: Click the layout button within the application toolbar and the Screen Painter
window appears.

Step 2: Add a Text Field and enter some text such as "Hello World".

& Coe@ SR ¥DE 79 EEO @
6?:3? Eﬁ ETJ i @u Ee’ 4 P 43 Flowlogic <= Attibutes 4= Element List ﬁ Delets

| Text |HE||D_Wc|rI|:| Lg’T H "I_ X

Hello Torld

150

tutorialspoint

EIMPLYEAEYLEARMNINEG

P

SAP ABAP

Creating Transaction

Step 1: To create a transaction code for your program, simply right click on the program
name and choose the option Create - Transaction and enter a transaction code as
'ZTRANEX'.

Transaction code ZTRANEX
Package
Transaction text Creating Transaction
Prograrm Z5CREENEX
Screen number 0211
authorization Object |ﬁfﬁ Wallies

¥ |Maintenance of standard transaction variant alowed

Classification
Transaction classification
Professional User Transaction

Easy Web Transaction Seryice

ST support
SAPGLUI for HTML
SAPGUI for Java
 [SAPGUL for Windows

Step 2: Enter the transaction text, program and screen you have just created
(ZSCREENEX & 0211), and tick the ‘SAPGUI for Windows’ checkbox in the ‘GUI support’
section.

151

tutorialspoint

EIMPLYEAEYLEARMNINEG

P

SAP ABAP

Executing the Program

Save and activate everything. You can execute the program. As the program executes,
the text you entered is displayed on the screen as shown in the following screenshot.

[SAP
& ~dHICEQ CHE EDO8 EE

SAP

Hello World

152

w Mtutorialspoint

EIMPLYEAEYLEARMNINEG

56. ABAP-Smart Forms

SAP Smart Forms tool can be used to print and send documents. This tool is useful in
developing forms, PDF files, e-mails and documents for the Internet. The tool provides an
interface to build and maintain the layout and logic of a form. SAP also delivers a selection
of forms for business processes such as those used in Customer Relationship Management
(CRM), Sales and Distribution (SD), Financial Accounting (FI) and Human Resources (HR).

The tool allows you to modify forms by using simple graphical tools instead of using any
programming tool. It means that a user with no programming knowledge can configure
these forms with data for a business process effortlessly.

In a Smart Form, data is retrieved from static and dynamic tables. The table heading and
subtotal are specified by the triggered events and the data is then sorted before the final
output. A Smart Form allows you to incorporate graphics that can be displayed either as
part of the form or as the background. You can also suppress a background graphic if
required while taking a printout of a form.

Some examples of standard Smart Forms available in SAP system are as follows:

e SF_EXAMPLE_O01 represents an invoice with a table output for flight booking for a
customer.

e SF_EXAMPLE_02 represents an invoice similar to SF_EXAMPLE_01, but with
subtotals.

e SF_EXAMPLE_O03 specifies an invoice similar to SF_EXAMPLE_02, but one in which
several customers can be selected in an application program.

Creating a Form

Let’s create a form by using the SAP Smart Forms tool. You will also learn how to add a
node in the Smart Form and test the form in this tutorial. Here we begin with creating a
copy of the SF_EXAMPLE_01 form. The SF_EXAMPLE_01 form is a standard Smart Form
available in the SAP system.

Step 1: Smart Form Builder is the main interface used to build a Smart Form. It is available
on the initial screen of SAP Smart Forms. We need to type the 'SMARTFORMS' transaction
code in the Command field to open the initial screen of SAP Smart Forms. In this screen,
enter the form name, SF_EXAMPLE_O01, in the Form field.

Step 2: Select Smart Forms = Copy or click the Copy icon to open the Copy Form or Text
dialog box.

Step 3: In the Target Object field, enter a name for the new form. The name must begin
with the Y or Z letter. In this case, the name of the form is 'ZSMM1".

153

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

= SAP Smart Forms: Initial Screen
& | R CO@ EHE

SAP Smart Forms: Initial Screen
OB @ =

(&) Form |ESI‘ﬂ'Il
() Style |
() Text Module |

|63f Diisplay | |.ﬁ? Change | |] Create

| [S Copy Form or Text

Source Object |SF_EXAMPLE 01 I
Target Chject MMl I
. e = i

Step 4: Click the Continue icon or press the ENTER key in the Copy Form or Text dialog
box so that the ZSMM1 form is created as a copy of the predefined form SF_EXAMPLE_O01.

Step 5: Click the Save icon. The name of the form is displayed in the Form field on the
initial screen of SAP Smart Forms.

Step 6: Click the Create button on the initial screen of SAP Smart Forms. The ZSMM1
form appears in Form Builder.

Step 7: The first draft page is created with a MAIN window. All the components of the
new form are based on the SF_EXAMPLE_01 predefined form. You can just click a node in
the Navigation menu to view its content.

154

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

SAP Form Builder: Change Form ZSMM1

g § B = B =»Form Painter
Farrm Farm
- =5 ZSMM1

Meaning
* ' Global Settings

. Form Attributes
. Form Interface General Attrib
. Global Definitions
* 3 Pages and Windows
* =4 FIRST First page

- [8 MySAPCOM mySaP.o Created by
v Bh MAIN Main Window Date

+ (33 ADDRESS Custormer & Time

v [0 INFO Document Tnfio

v [0 FOOTER Company-Sp packags

v [NEXT Mext page

Creating a Text Node in the Form

Step 1: Open a form in the change mode of the SAP Form Builder screen and right-click
the Main Window option in the First Page node and select Create - Text from the context
menu.

Step 2: Modify the text in the Text field to 'My_Text' and the text in the Meaning field to
'Text_Demo'. Enter the text 'Hello TutorialsPoint..... " in the text-editing box in the center
frame of Form Builder as shown in the following snapshot:

155

@tutorialspoint

SAP ABAP

= Form Painter

Text My Text

Meaning Text Demo

General Attributes - web Properties Cutput Options

Text Type | Text Element d Start [

o6 [FE I) [0 | G2]| | Formats [Farmats || 9 |

|F| Paragraph Faormats * Default paragraph * Char
GO

Hello TutorialsPolnt... .=

Step 3: Click the Save button to save the node.

Step 4: Activate and test the node by clicking the Activate and Test icons, respectively.
The initial screen of Function Builder appears.

Step 5: Activate and test the function module by clicking the Activate and Execute icons.
The parameters of the function module are displayed in the initial screen of Function
Builder.

Step 6: Execute the function module by clicking the Execute icon. The Print dialog box
appears.

Step 7: Specify the output device as 'LP0O1' and click the Print preview button.

156

by

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

The above steps will produce the following output:

WRES Holdliog S0, B Do 2960, Zamnple CLN 20D Sr nlkd bingdom, Invoice
Administrative clerk Mr. Jones
Telephone +1.-"'I2 12.-'"]99 10 99
Telefax +1.-"'I2 12.-'"]99 12 99
Signed 39999 .-"'I 2000
Custormer number oooooooo
Date 21.11.2Z015

Hello TutorialsPBoint. ...
Dear S1r or Madam,

We would appreciate payment of the following invoice as =oon
az possible. Thank vou for placing vour confidence in us.

Car Line Flight Departure Price
rie Date

r

Total

Yours sincerely,
IDEZ HOLDING A

157

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

57. ABAP—SAPscripts

The SAPscript tool of the SAP system can be used to build and manage business forms
such as invoices and purchase orders. The SAPscript tool provides numerous templates
that simplify the designing of a business form to a great extent.

The SAP system comes with standard SAPscript forms that are delivered with the SAP
standard client (generally as client 000). Following are a few examples of standard
SAPscript forms delivered with client 000:

Form Name Description

RYORDERDOL Sales Order Confirmation Farm
FVYDELMOTE Packing List

R IMYOICED] Invoice

MEDRLUCE Purchase Order

F110 PREMUM CHCE Prenumbered Check

The structure of a SAPscript form consists of 2 main components:
Content: This can be either text (business data) or graphics (company logo).

Layout: This is defined by a set of windows in which the form content appears.

SAPscript — Form Painter Tool

The Form Painter tool provides the graphical layout of a SAPscript form and various
functionalities to manipulate the form. In the following example, we are going to create
an invoice form after copying its layout structure from a standard SAPscript form
RVINVOICEQ1, and display its layout by accessing the Form Painter tool.

Step 1: Open the Form Painter. You may request the screen either by navigating the SAP
menu or by using the SE71 transaction code.

Step 2: In the Form Painter, request screen, enter a name and language for a SAPscript
form in the Form and Language fields, respectively. Let’s enter 'RVINVOICEO1' and 'EN'
respectively in these fields.

158

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

& ~dH O CHE BHm 48 EE
Form Painter: Reguest

[0 & &

Farm RYINVOICEDL O Create

LangLiage EN

Subobijects

“Header

* Page Layout
“Paragraph Forrmats
“ICharacter Formats
~Docurmentation

e Display | (& Change |

Step 3: Select the Page Layout radio button in the Sub objects group box.

Step 4: Select Utilities > Copy from Client to create a copy of the RVINVOICEO1 form.
The 'Copy Forms Between Clients' screen appears.

Step 5: In the 'Copy Forms Between Clients' screen, enter the original name of the form,
'RVINVOICEOQ1', in the Form Name field, the number of the source client '000' in the Source
Client field, and the name of the target form as 'ZINV_01' in the Target Form field. Make
sure that other settings remain unchanged.

& " dEICE@R BRI TT o8 E
Copy Forms Between Clients
&
Farmn Mame EVINVOICEQL
Source Client Qoo
Target Form ZINV_0O1

Original Language Cnly

 |Flow Trace

159

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

Step 6: Next, click the Execute icon in the 'Copy Forms Between Clients' screen. The
'Create Object Directory Entry' dialog box appears. Click the Save icon.

The ZINV_01 form is copied from the RVINVOICEO1 form and displayed in the 'Copy Forms
Between Clients screen' as depicted in the following snapshot:

Copy Forms Between Clients
Copy Forms Between Clients
EINV 01 : Original language set to D
EINV 01 : Definition D copied
EINV 01 : Language d copied
EINV 01 : Language c© copied
EINV 01 : Language W copied
EINV 01 : Language ¥V copied
ZINV_01 : Lancquage T copied
EINV 01 : Language 3 copied
ZINV_ 01 : Lancquage B copied
ZINV 01 : Language [copied
ZINV_01 : Lancquage P copied
EINV 01 : Language 0 copied
EINV_01 : Langquadge N copied
EINV 01 : Language M copied
EINV 01 : Language L copied
EINV 01 : Language E copied
EINV 01 : Language J copied
EINV 01 : Language I copied
EINV 01 : Language H copied
ZINV_01 : Lancquage F copied
EINV 01 : Language E copied
ZINV_01 : Langquage D copied
EINV 01 : Language C copied
ZINV_ 01 : Lancquage B copied
EINV 01 : Language & copied
EINV_01 : Languadge & copied
EINV 01 : Language 5 copied
EINV 01 : Language 4 copied
EINV 01 : Language 3 copied
EINV 01 : Language Z copied
EINV 01 : Language 1 copied

Step 7: Click the back icon twice and navigate back to the Form Painter: Request screen,
which contains the name of the copied form ZINV_01.

160

w Mtutorialspoint

EIMPLYEAEYLEARMNINEG

SAP ABAP

Step 8: After clicking the Display button, the 'Form ZINV_01: Layout of Page FIRST'
window and the 'Form: Change Page Layout: ZINV_01' screen appears as shown in the
following screenshot.

@ JdE eae Il-IEL;DlERllelllllllllllll

Form: Change Page Layout: ZINV_

"2 LUDefinition SO Texts " 42 Paragraph |

Page
FIRST * | First page =l 5D DRESS:
]2

Wirciory Graph,
MHarne MATM - TR
Default par,
Left Margin 7.87 |CH
Upper margin 34.25 JILN)
window width 71.00 |CH 1‘|L-'1A|IN:|}| N Y O I

wWindow height Z9.00 LN

161

tutorialspoint

EIMPLYEAEYLEARMNINEG

P

SAP ABAP

Step 9: The 'Form ZINV_01: Layout of Page FIRST' window shows the initial layout of the
form. The layout of the form contains five windows: HEADER, ADDRESS, INFO, INFO1,
and MAIN. The description of these windows can be accessed in PC Editor.

For instance, by just selecting the MAIN window and clicking the Text icon in the 'Form:
Change Page Layout: ZINV_01' screen, you can view all the margin values as shown in
the following screenshot:

7 Window - Graph,

Marme MAIN -
Diefault par,

Left Margin 7.87 |CH
Llpper margin 34.25 LN
Window width 71.00 CH

Window height 29.00 LN

162

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

58.

ABAP — Customer Exits

Customer exits could be considered as hooks to the SAP standard programs. We do not
need an access key to write the code and there is no need to modify the SAP standard
program. These exits don't have any functionality and they are empty. Business logic could
be added in order to meet various client requirements. However, Customer Exits are not
available for all programs.

Customer Exits for Standard Transactions

Following are the steps to find customer exits as far as standard transactions are
concerned. Let’s identify customer exits available in MM0O1 (Material Master Creation).

[Create Material (Initial Screen)
& Y dH C@@ SHE DDhadh EE &N

Create Material (Initial Screen)

Select view(s] Org, Lewels Data
Material ' '
Industry sector ' -
Material Type ' -

]

Change Hurmber

Materi | H5a0e data
Client 500/ PrewioLs logon '21.11.2015 |13:09:00
User ECCTOLL Logan l13:37:34
Language 'ﬁ' System time 'm
Time zone AUSHST 119:07:55
| SAP data
| Repository data | SAP Systermn data |
Transaction ‘Mol Carnpanent version 'Sﬂ-.F' ECC 6.0 '
Pragram (screen) |SAPLMGIM '

Step 1: Go to transaction MMO01 and identify the program name of MM01 by going to Menu
bar > System - Status as shown in the above screenshot.

Step 2: Get the program name from the popup screen. The program name is 'SAPLMGMM'.

Step 3: Go to transaction SE38, enter the program name and click Display.
163

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Step 4: Navigate to Go to - Properties and find out the package of this program name.

ABAP Editor: Display FunctionPool SAPLMGMM
e LU EOH®@ o B s 20 H @@ ratten | @ N
FunctionPool | SAPLMGMM Active
1 EE I I R I I I I
Z * Svatem—defined Tholude-files.
3 R R R N
4 INCLUDE LMGMMTOPR. " Zlokal] Data
5 INCLUDE LMGMMUIX. " Function Modules
(&)
7
=]
= . | |
i Function group MGMM
11 | Short text Main Programn Matl Master Maintenance Std |
1z
| P E——
13| Person Responsible SAF
14
15 Package MGA '
15: | Application B
17 | Status Activated '
12 Program status T
> |[CEditar lock
21} | [WFixed point arithrmetic
22! | [@Unicode checks active
23
54 [JTranslation of technical texts
25
25 [Change Requests (Organizer) H Main program ” Function group doc, J

The package name is 'MGA'".

Step 5: Go to transaction code SMOD that is usually used to identify customer exits.
Navigate to Utilities - Find (or) you may directly press Ctrl + F on the transaction code
SMOD.

Step 6: After going to the ‘Find Exits’ screen, enter the package name we got earlier and
press F8 (Execute) button.

164

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Repository Info System: Find Exits
& & & & H O

Standard selections

Exit hame =
Shart text s
Package ML 2
Application Compornent =5

Settings
Maxirmurn Mo, of Hits 200

The above steps produce the following output with the list of exits available in the Material
Master Creation.

Repository Info System: Exits Find (3 Hits)
= Fardp e B S FSEERETYRE ® [@choe [Mswe

Exit name|Short text

MEA00001 (Material Master (Industry): Checks and Enhancements
MEA00002 (Material Master (Industry): Mumber Assignment
MEAR00003 (Material Master (Industry and Fetail): Number Display

165

@" tutorialspoint

MPLYEAEYLEARMNING

59. ABAP - User Exits

User exits are used in an extraction if the standard SAP extractors do not provide the
expected data or the required functionality, for instance in authorizations or time checks.
User exits are commonly used in Sales and Distribution (SD) modules. There are many
exits provided by SAP in the areas of sales, transportation, shipping and billing. A user
exit is designed to make some changes when standard SAP is not capable of fulfilling all
the requirements.

To be able to access what exits are available in each area of sales, go to IMG using this
path: IMG - Sales and Distribution > System Maodifications - User Exits. The
documentation for each exit in the areas of SD is explained thoroughly.

For instance, if you want to find user exits in Sales Document Processing (contract,
quotation or sales order), follow the path mentioned above and continue to expand the
node User Exits in Sales > User Exits. Click on icon documentation to see all user exits
available in Sales Document Processing.

User Exit Description
USEREXIT_FIELD_MODIFICATION Used to modify screen attributes.
USEREXIT_SAVE_DOCUMENT Helps in performing operations when the user

hits Save.

USEREXIT_SAVE_DOCUMENT_PREPARE | Very useful to check input fields, put any
value in the field or show a popup to users
and to confirm the document.

USEREXIT_MOVE_FIELD_TO_VBAK Used when user header changes are moved
to header work area.

USEREXIT_MOVE_FIELD_TO_VBAP Used when user item changes are moved to
SAP item work area.

A User Exit serves the same purpose as Customer Exits but they are available only for the
SD module. The exit is implemented as a call to a Function Module. User Exits are
modifications to SAP standard programs.

166

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Example

REPORT ZUSEREXIT1.
TABLES:
TSTC, TSTCT,
TADIR, TRDIR, TFDIR, ENLFDIR,
MODSAPT, MODACT.
DATA:
JTAB LIKE TADIR OCCURS © WITH HEADER LINE,
field1(30),
v_devclass LIKE TADIR-devclass.
PARAMETERS:
P_TCODE LIKE TSTC-tcode OBLIGATORY.
SELECT SINGLE *
FROM TSTC
WHERE tcode EQ P_TCODE.
IF SY-SUBRC EQ @.
SELECT SINGLE *
FROM TADIR
WHERE pgmid = 'R3TR' AND
object = 'PROG' AND
obj_name = TSTC-pgmna.
MOVE TADIR-devclass TO v_devclass.
IF SY-SUBRC NE @.
SELECT SINGLE *
FROM TRDIR
WHERE name = TSTC-pgmna.
IF TRDIR-subc EQ 'F'.
SELECT SINGLE *
FROM TFDIR
WHERE pname = TSTC-pgmna.
SELECT SINGLE *
FROM ENLFDIR
WHERE funcname = TFDIR-funcname.
SELECT SINGLE *
FROM TADIR
WHERE pgmid = 'R3TR' AND
object = "FUGR' AND
obj_name EQ ENLFDIR-area.
MOVE TADIR-devclass TO v_devclass.
ENDIF.
ENDIF.
SELECT *
FROM TADIR
INTO TABLE JTAB
WHERE pgmid = 'R3TR' AND
object = 'SMOD' AND
devclass = v_devclass.
SELECT SINGLE *
FROM TSTCT
WHERE sprsl EQ SY-LANGU AND
tcode EQ P_TCODE.
FORMAT COLOR COL_POSITIVE INTENSIFIED OFF.
WRITE:/(19) 'Transaction Code - ',

167

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

20(20) P_TCODE,
45(50) TSTCT-ttext.
SKIP.
IF NOT JTAB[] IS INITIAL.
WRITE:/(95) SY-ULINE.
FORMAT COLOR COL_HEADING INTENSIFIED ON.
WRITE:/1 SY-VLINE,
2 "Exit Name',
21 SY-VLINE ,
22 'Description’,
95 SY-VLINE.
WRITE:/(95) SY-ULINE.
LOOP AT IJTAB.
SELECT SINGLE * FROM MODSAPT
WHERE sprsl = SY-LANGU AND
name = JTAB-obj_name.
FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
WRITE:/1 SY-VLINE,
2 JTAB-obj_name HOTSPOT ON,
21 SY-VLINE ,
22 MODSAPT-modtext,
95 SY-VLINE.
ENDLOOP .
WRITE:/(95) SY-ULINE.
DESCRIBE TABLE JTAB.
SKIP.
FORMAT COLOR COL_TOTAL INTENSIFIED ON.
WRITE:/ 'No of Exits:' , SY-TFILL.
ELSE.
FORMAT COLOR COL_NEGATIVE INTENSIFIED ON.
WRITE:/(95) 'User Exit doesn’t exist'.
ENDIF.
ELSE.
FORMAT COLOR COL_NEGATIVE INTENSIFIED ON.
WRITE:/(95) 'Transaction Code Does Not Exist'.
ENDIF.
AT LINE-SELECTION.
GET CURSOR FIELD fieldl.
CHECK field1(4) EQ 'JTAB'.
SET PARAMETER ID 'MON' FIELD sy-lisel+1(19).
CALL TRANSACTION 'SMOD' AND SKIP FIRST SCREEN.

SAP ABAP

'@j Mtutorialspoint

EIMPLYEAEYLEARMNINEG

168

SAP ABAP

While processing, enter the transaction code ‘MEQ1’ and press F8 (Execute) button. The
above code produces the following output:

Transaction Code - MEOL Maintain Source List

Exit Nane Dezcription

AMPLOOOL User subscreen for additional data on AMPL

LMEDROOL Enhancements to print program

LMELADOZ Adopt batch no. from shipping notification when posting a GR
LMELADLO Inbound shipping notification: Transfer item data frowm IDOC
LMEQROOL TUser exit for source determination

LMEXFOOL Conditions in Purchasing Documents Without Inwoice Receipt
L3300l Customer-3pecific Source Determinhation in Retail

MOeEOOOL Fole determination for purchase requisition release
MOeEOOOZ Changes To comnm. structure for purchase requisition release
MOeEOOOS Number range and document number

MOeEBEOOO4 Number range and document number

MOeEOOOS Changes to comm. structure for owverall release of redquisn.
MOeEQODOO4 Changes to communhication structure for release purch. doc.
MOeEQOQOS Role determination for release of purchasing documents
MESS0001 Grouping of recusitions for PO split in MELS

MEETAODOL Define schedule lihe type (backlog, immed. red., preview)
MEFLDOO4 Determine earliest deliwery date £. check w. GR [only P0O)
MELALROOL Gen. forecast delivery schedules: Transfer schedule inmplem.
MEQUERY1 Enhancenent to Document Overview MEZIN/MESIN

MEVMEOOL WE default quantity calc. and ower/ underdeliwvery tolerance
MMOGEDOL User exits for EDI inbound and outhound purchasing documents
MMOGEDOS Munber range and dooument number

MMOGEDO4L Control import data screens in purchase order

MMOGEQOS Customer fields in purchasing document

169

tutorialspoint

EIMPLYEAEYLEARMNINEG

P

60. ABAP - Business Add-Ins

In some cases, special functions need to be predefined in a software application to enhance
the functionality of various applications. There are many Microsoft Excel add-ins to
improve the functionality of MS Excel. Similarly, SAP facilitates some predefined functions
by providing Business Add-Ins known as BADIs.

A BADI is an enhancement technique that facilitates a SAP programmer, a user, or a
specific industry to add some additional code to the existing program in SAP system. We
can use standard or customized logic to improve the SAP system. A BADI must first be
defined and then implemented to enhance SAP application. While defining a BADI, an
interface is created. BADI is implemented by this interface, which in turn is implemented
by one or more adaptor classes.

The BADI technique is different from other enhancement techniques in two ways:

¢ Enhancement technique can be implemented only once.

¢ This enhancement technique can be used by many customers simultaneously.

Enhancerment Implementation
[for object plug-in]

Enhancemeant
[for BAAI) __._.-"‘
.r"'rl_rr
'._r"'
.-l"'r. -r"r‘
.l-l"r.-l‘-

= Enhancerment Implementation

- “"-.h.,__h [for object plug-in]
.
H‘"H.
o
et
—-_ _“_'I-|_|_‘_
~—— = |

You can also create filter BADIs, which means BADIs are defined on the basis of filtered
data that is not possible with enhancement techniques. The concept of BADIs has been
redefined in SAP Release 7.0 with the following goals:

e Enhancing the standard applications in a SAP system by adding two new elements
in the ABAP language, that is ‘GET BADI’ and ‘CALL BADI".

e Offering more flexibility features such as contexts and filters for the enhancement
of standard applications in a SAP system.

170

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

When a BADI is created, it contains an interface and other additional components, such as
function codes for menu enhancements and screen enhancements. A BADI creation allows
customers to include their own enhancements in the standard SAP application. The
enhancement, interface, and generated classes are located in an appropriate application
development namespace.

Hence, a BADI can be considered as an enhancement technique that uses ABAP objects to
create ‘predefined points’ in the SAP components. These predefined points are then
implemented by individual industry solutions, country variants, partners and customers to
suit their specific requirements. SAP actually introduced the BADI enhancement technique
with the Release 4.6A, and the technique has been re-implemented again in the Release
7.0.

171

MPLYEAEYLEARMNING

'@j Mtutorialspoint

61. ABAP-—Web Dynpro

Web Dynpro (WD) for ABAP is the SAP standard user interface technology developed by
SAP AG. It can be used in the development of web-based applications in the SAP ABAP
environment that utilizes SAP development tools and concepts. It provides a front-end
web user interface to connect directly to backend SAP R/3 systems to access data and
functions for reporting.

Web Dynpro for ABAP consists of a run-time environment and a graphical development
environment with specific development tools that are integrated in the ABAP Workbench
(transaction: SE80).

Architecture of Web Dynpro

The following illustration shows the overall architecture of Web Dynpro:

Web Dynpro

B Event handling
B Update application data
B Determine the condrol flow

Reuest 4 Controller

i —

B Usua connectionto
business functionality

Response
%
B Vi=ualize data

e CoONVtrol flow
s) gt Flowe

172

@ tutorialspoint

EIMPLYEAEYLEARMING

SAP ABAP

Following are a few points to keep in mind regarding Web Dynpro:

e Web Dynpro is the SAP NetWeaver programming model for user interfaces.

e All Web Dynpro applications are structured as per the Model View Controller (MVC)
programming model.

e« The model defines an interface to the main system and the Web Dynpro application
can have an access to system data.

e The view is responsible for showing the data in the web browser.

e The controller resides between the view and the model. The controller formats the
model data to be displayed in the view. It processes the user entries made by the
user and returns them to the model.

Advantages

Web Dynpro offers the following advantages for application developers:

e The use of graphical tools significantly reduces the implementation effort.
e Reuse and better maintainability by using components.

e« The layout and navigation is easily changed using the Web Dynpro tools.
e User interface accessibility is supported.

o Full integration in the ABAP development environment.

Web Dynpro Component and Window

The component is the global unit of the Web Dynpro application project. Creating a Web
Dynpro component is the initial step in developing a new Web Dynpro application. Once
the component is created, it acts as a node in the Web Dynpro object list. You may create
any number of component views in a component and assemble them in any number of the
corresponding Web Dynpro windows.

At least one Web Dynpro window is contained in each Web Dynpro component. The Web
Dynpro window embeds all the views that are displayed within the front-end web
application. The window is processed in the window editors of the ABAP Workbench.

Note:

e The component view displays all the administrative details for the application
including the description, the name of the person who created it, the creation date,
and the assigned development package.

e The Web Dynpro application is the independent object in the object list of the ABAP
Workbench. The interaction between the window and the application is created by
the interface view of a given window.

173

i

P

tutorialspoint

EIMPLYEAEYLEARMNINEG

