
INTRODUCTION

This document was created to outline several naming standards,

programming standards, and best practices in ABAP programming and

provide guidelines for ABAP development for MIT. These are not "The

Official ABAP/4 Standards", however they do contain MIT-specific

programming conventions and techniques.

The topics included are general coding standards, performance standards,

naming conventions, tips & tricks, and sample programs. As standards are

developed, this guide will be updated on an ongoing basis.

The document is intended for use by ABAP developers as a guide for MIT-

specific developments and enhancements to R/3. The user of this document

should be familiar with basic concepts of R/3 and should have taken a

training class equivalent to SAP20 R/3 Overview.

 To request clarification of these issues or to suggest other topics to be

covered, please contact David Rosenberg (rosenberg@mit.edu).

I. HOW TO UPDATE THIS GUIDE

If you have questions about topics in this guide, would like to suggest

changes, or provide new topics to be included, please submit the

topics and details about the updates to David Rosenberg

(rosenberg@mit.edu).

Revision History

Revision Date Description of Changes

1 05/15/98 Initial (post-review) distributed version

2 05/22/98 Document layout changes and spelling corrections

3 9/17/98 Performance Section update, New Tips & Tricks,

Application abbreviations added (PM, RQ, BP), New

document layout and navigation features. Note that new

or modified sections are highlighted in the table of

contents with a .

II. ABAP/4 BACKGROUND

The ABAP/4 language is an "event driven", "top-down" programming

language. The execution of an event is controlled by the ABAP/4
processor. For example, the event AT SELECTION-SCREEN is

executed when the user hits ENTER on the selection screen and the
event START-OF-SELECTION is executed when the user presses

ENTER to start the program. Because the ABAP/4 language
incorporates many "event" keywords and these keywords need not be

mailto:rosenberg@mit.edu
mailto:rosenberg@mit.edu

in any specific order in the code, it is wise to implement in-house

ABAP/4 coding standards.

MIT-ABAP Mail List

Anyone doing SAP development at MIT should subscribe to the MIT-

ABAP mail list. This includes employees, contractors, consultants,
project leaders, and project managers. The list is intended for all

development issues including configuration, workflow, report writer,

report painter, basis, system administration, documentation, support,

training, management, and master data maintenance.

To subscribe to the list, send e-mail

to LISTSERV@MITVMA.MIT.EDU with the body of the message
containing the single line "SUBSCRIBE MIT-ABAP [Your real name]".

(without the quotes or brackets and filling in your name)

III. CODING STANDARDS

General Standards

1. One command per line

Each ABAP/4 command consists of a sentence ending with a period. Multiple

commands can be on one line; however, as a standard start each new

command on a new line. This will allow for easier deleting, commenting, and

debugging.

2. Indented source code

The ABAP/4 editor has a "Pretty Printer" command to indent by 2 positions

specific lines of code and add subroutine comments. Event keywords are

typically not indented.

DATA: BEGIN OF tab OCCURS 100,

 f1 LIKE sg-field1,

 f2 LIKE sg-field2,

 END OF tab.

DATA: f1 TYPE I,

 f2 TYPE I.

START-OF-SELECTION.

GET table.

 IF f1 = f2.

 f1 = 0.

 ELSE.

 f1 = 1.

 ENDIF.

SELECT * FROM tabl WHERE

 field1 EQ sg-field2 AND

 field2 BETWEEN sg-field5 AND sg-field6.

 MOVE ...

 APPEND ...

ENDSELECT.

mailto:LISTSERV@MITVMA.MIT.EDU

END-OF-SELECTION.

LOOP AT tab.

 AT NEW f1.

 CASE F1.

 WHEN ... WRITE:/ ...

 WHEN ... WRITE:/ ...

 ENDCASE.

 ENDAT.

 WRITE:/ f1, f2, ...

ENDLOOP.

3. Variable naming

ABAP/4 variable names can be up to 30 characters for DATA fields and

subroutines and up to 8 characters for SELECT-OPTIONS and PARAMETERS,

therefore, as a standard make the names descriptive. Since SAP

segment/table-field names are hyphenated with a '-' (dash), use an '_'

(underline) to separate the words for program-specific variables. Whenever

possible, the LIKE parameter should be used to define work fields.

DATA: MAT_DT LIKE SY-DATUM,

 DAYS TYPE I,

 HOLD_ACCTNO LIKE sg-field1,

 GROSSAMT(10) TYPE P DECIMALS 2,

 GROSS_PERCENT(3) TYPE P DECIMALS 2,

 NET%(3) TYPE P DECIMALS 2.

A good rule-of-thumb is to differentiate between DATA fields, SELECT-

OPTIONS and PARAMETERS by prefixing selection fields with 'S' or 'P'.

SELECT-OPTIONS: S_USER FOR sg-fieldx,

 S_DATE FOR sg-fieldy.

PARAMETERS: P_DEST(4).

Subroutine examples:

FORM CALCULATE_MATURITY_DATE.

 MAT_DT = SY-DATUM + DAYS.

ENDFORM.

or for COBOL-like standards

FORM F100_CALCULATE_MATURITY_DATE.

4. Reusable code

If a block of code is executed more than once, it should be placed in a

subroutine at the bottom of the code. This makes the code more readable,

requires less indentation, and is easier to debug since the debugger can

jump through an entire subroutine via a PF key. Also, when possible

parameters should be passed to and from subroutines to make the purpose

easier to understand and reduce the need for global variables. Always

document the purpose of each parameter.

5. Parameter passing in subroutines

Whenever possible use a TYPE or LIKE statement when specifying the formal

parameters of a subroutine. This is a good programming style, plus it allows

the ABAP compiler to generate more efficient code (which can increase

performance up to a factor of 2x). For example:
form <subroutine> tables p_tab1 like <tab1>[]

 using p_param1 like <data>

 p_param2 like <dd-field>

 p_param3 like <dd-structure>

 p_param4 type <standard data type>

 p_param5 type <user defined data type>

....

endform.

6. Text handling

Literal text which is printed on the report can be handled two ways.

One way is to hard code the literal in the code and give the option of

maintaining Text Elements for multi-lingual clients.

WRITE:/ 'Grand Total:'(001), ...

Another way is to always use Text Elements.

WRITE:/ TEXT-001.

The advantages to the first way are readability and the Text Element only

needs to be maintained for multi-lingual clients. The advantage to the

second way is easier maintainability if TEXT-001 is coded several times in

the program and it needs to be changed. The editor command REPLACE

does not change contents inside single quotes.

7. Program Analysis Utility

To determine the usage of variables and subroutines within a program, you

can use the ABAP utility called ‘Program Analysis’ included in transaction

SE38. To do so, execute transaction SE38, enter your program name, then

use the path Utilities -> Program Analysis

8. Usage of UserIDs in programs

In no case should a production program or function contain a UserID as

either literal or constant data. In the development system it may be

necessary to code temporary breakpoints for specific UserIDs, however,

these debugging techniques must be removed before the program will be

transported.

Authorization Groups

Authorization Groups permit users access to execute report-type programs from

transaction SA38 (or SE38). Programs that can be executed by all MIT users must

be configured using the Authorization Group 'ZOPN2ALL' for Application '*'. This

configuration is done by the developer of the report program in the 'Attributes'

screen of SE38.

If a program DOES NOT have the 'ZOPN2ALL' authorization group configured for it,

we assume that only certain users should be able to execute it and that other

methods of authorization, such as authorization objects are being used to prevent

improper use.

Authorizations : Usage of SAP objects

For any custom programming using authorization checks, developers must

determine whether a standard SAP authorization object should be used, or if a

custom object should be developed. Since the authorization object implementation

typically comprises more business-related than technical issues, developers should

consult with the business analysts responsible for the application in making this

decision.

Dates : Output in reports (Year 2000 compliance)

The preferred formats for representing a date in a printed report are

either MM/DD/YYYY or DD-MM-YYYY. In any case, use of a 4-digit

year is a requirement.

The R/3 system is already year 2000 compliant. To preserve that

compliance, whenever a date is written or read, the year field should
contain four digits. The only exception to this standard is reading

from or writing to external files, where the year 2000 restriction in
the external system may be different. However, even in this case, if it

is at all possible, it is desirable to allocate four digits for the year in

the file layout.

GUI : SAP Style Guide

For applications that require dialog programming, the SAP Style

Guide should be used as a basis for development. Using this guide
for screen design and ergonomics will insure consistency in MIT

developed transactions. The SAP Style Guide is available in the help
documentation using the following path: Help -> R/3 Library ->

Basis Components -> ABAP/4 Development Workbench -> SAP Style

Guide.

GUI : Screen painter resolution

The MIT user community is, in general, standardized on systems

capable of 800x600 resolution. Hence, any screen painter

development should insure that all fields are viewable within that
screen size. This corresponds to the SAP default screen size of 21

lines by 83 columns. Note that SAP does not include the title, menu

bar, status line, and OKCode box in this area.

Interface : Field sizes and layouts in data files

All external file layouts used for interfaces to and from the R/3

system should be discussed with and approved by the Bridges Team
before the layout is finalized. This is to insure consistency in field

conventions and file processing standards. The requirements for the

following data elements are:

 Dates

 As indicated in the section "Writing dates in reports," dates should use a 4-

digit year with certain exceptions.
 Cost Objects

Cost objects should be left-aligned in a 12-character field with trailing

blanks. (Optionally, a 7-character field followed by 5 characters of blank

filler is acceptable)
 Cost Elements

Cost elements should be left-aligned in a 10-character field with trailing

blanks. (Optionally, a 6-character field followed by 4 characters of blank

filler is acceptable)

Interface : Dropbox mechanism for file interfaces

The dropbox is the standard method for data providers to

automatically deliver files created outside of SAP as feeds into MITs
SAP R/3 environments. Data providers must be registered with the

dropbox. These providers FTP data files to the dropbox. Based on a
combination of file naming conventions and registered dropbox

userids, the files are automatically delivered to the appropriate MIT

SAP R/3 environment.

Detailed documentation on how to use this mechanism is located

at http://mitvma.mit.edu/~bridges/dropbox.html

Interface : Inbound interface filename determination from

event

When an inbound interface is initiated by triggering an SAP event, the

filename can be sent as an event parameter which can then be read

by the interface program. An example of using this triggering and

parameter passing method is shown here:

data: infile like rlgrap-filename. " File name pass by event

data: event_flag(1).

* data for getting runtime job info(for event parameter)

data: eventid like tbtcm-eventid,

 eventparm like tbtcm-eventparm,

 external_program_active like tbtcm-xpgactive,

 jobcount like tbtcm-jobcount,

 jobname like tbtcm-jobname,

 stepcount like tbtcm-stepcount.

data: dropbox_dir like rlgrap-filename

 value '/usr/bridges/&func/sapin/'.

…

initialization.

 perform get_event_info.

…

form get_event_info.

 clear event_flag.

 call function 'GET_JOB_RUNTIME_INFO'

http://mitvma.mit.edu/~bridges/dropbox.html

 importing

 eventid = eventid

 eventparm = eventparm

 external_program_active = external_program_active

 jobcount = jobcount

 jobname = jobname

 stepcount = stepcount

 exceptions

 no_runtime_info = 1

 others = 2.

 if sy-subrc = 0.

 event_flag = 'X'.

 if not eventparm is initial.

 clear infile.

 concatenate dropbox_dir eventparm into infile.

 endif.

 endif.

endform. " GET_EVENT_INFO

Jobs : Tracking status using ZJOBRUN

Many programs are inputs or extracts from the R/3 system that

require detailed tracking of data file names and error statuses beyond
the capability of the standard R/3 job scheduler or if the program is

run in the foreground to capture the status its last run. To provide a

common repository for job status, the ZJOBRUN table was created.
All programs that need to track job status should read / write records

to / from this table. Using text files outside of the R/3 system or
other custom tables for this purpose is not recommended.

Additionally, if there are other programs that are using methods other
than the ZJOBRUN table to track status, they should be modified to

use ZJOBRUN instead.

ZJOBRUN Table

FIELD DESCRIPTI
ON

SAMPLE RECORD

PGNAM Program name ZARI003

BATCH Sequential

number of the

job run

85

DATUM Date of run 05/12/1998

UZEIT Time of run 19:32:04

RECCOUN

T
Record counter

– number

processed

303

ERRCOU

NT
Error Counter –

number or error

records

42

CNTRLRE

C
Control Record 261

CREDIT Total Credits (if

applicable)
10,654.04

DEBIT Total Debits (if

applicable)
12,744.79

ERRFILE Error File –

location of error

file on UNIX

filesystem

/usr/bridges/dev2/saptmp/eards.085.19980512

192540

REVIEW Review Flag

TEXT Text – any

additional text

info

DS cntrlrec/credit = posted

UNAME User who

executed the

job

FULLER

Master Data: Searching for a person's name in master data

In SAP master data tables, names can be stored in either upper case
or mixed case depending on how they are entered into the system.

Any program or function which searches master data tables for a
person's name should search in a non-case sensitive fashion to

account for this situation.

Updates : Direct database updates of SAP standard tables

Under no circumstances should any program directly update SAP-
delivered tables using the INSERT, UPDATE, or DELETE commands.

SAP-delivered tables begin with all letters other than Y and Z, and

they should only be updated using an SAP transaction. To automate
updates to SAP tables via a program, you may only use the CALL

TRANSACTION command (or optionally create a BDC using SAP

supplied functions).

IV. DOCUMENTATION STANDARDS

Configuration Documentation

FI Document Types (includes AP, GL, MM)

Accounting document type configuration is maintained as part of the

SAP configuration process. As such, you must always confirm any

new document types with the configuration team prior to coding a

report to access the data.

Also, existing extract programs may need to be modified for the new

document type, hence it is necessary to pro-actively notify The

Financial Architecture Group of the creation of a new document type
(Larry Connelly, connelly@mit.edu). After the new document type is

approved, the Financial Architecture Group will communicate the
changes to all other necessary parties so that other programs can be

modified.

Source Code Documentation

ABAP/4 code is fairly self-documenting. However, it is wise to provide

future programmers with documentation. Explain the purpose,
design, structure and any testing hints at the top of the program.

Maintain a history of modification notes, dated, with the most recent
change first. Comment work fields, and fields in work records

especially those used for interfacing. Comment all subroutines with

their purpose. Comments should explain what the code is doing, not

how the code is doing it.

MIT has developed several templates for providing documentation via

the ABAP ‘Program Documentation’ function. From the ABAP Editor
transaction SE38, you can access the documentation by selecting

object component ‘Documentation’ then click ‘Display’, or from within
the editor screen by doing Goto -> Program doc. The MIT templates

are in the following ABAP programs:

ZPROGDOC ABAP/4 Program documentation

ZSYSTDOC System documentation

ZFUNCDOC Function Module documentation

ZINCLDOC Include documentation

ZRPRPDOC Report Painter report documentation

It is mandatory to complete a documentation template prior to

transporting your program to the production system.

In addition to documentation via the templates, brief comments

within the code can be very helpful for ongoing program

mailto:connelly@mit.edu

maintenance. For example, you should document the major steps in

the program source, such as:

do 16 times. "why are we doing this 16 times instead of 12???
 ...
enddo.

For the example of CASE statements, each case value should be

documented:

case <variable>.
 when 'Y'. "explain what 'Y' actually means
 ...
 when 'H'. "explain what 'H' actually means
 ...
endcase.

When modifying a program, to document within the source code, you

can use the following convention:

*--

---*

* Purpose:

*

*

*--

---*

* Author:

* Date:

*

*--

---*

* Modification Log:

*

* 11/2/96 - Joe Q. Programmer SF2K900002

* Added

* 6/14/96 - Joe Q. Programmer SF2K900001

* Changed

*--

---*

DATA: BEGIN OF rec, "SF2K900001

 ind, "interface

type ind.

 f1 LIKE MA-IDNRA, "material

number

 f2 LIKE MA-KTX01, "material

short text

 f3(16), "filler "SF2K900002

 ...

 END OF rec.

Always note of which lines were changed or added by appending the

transport (change request) number to the line. (This is the

convention used by SAP developers)

Function Modules

The import and export parameters of function modules should be

documented with brief descriptions of the fields and their typical

contents. Also, any special requirements or usage should be noted. At
the minimum, the documentation 'Short Text' should be completed

for each parameter. This is found by selecting the 'Documentation'

radio button on the main function module transaction, SE37.

ABAP/4 Editor

INSERT D030L-TYPE D030L-DDNAME D030T-DDTEXT D030L-CBNAME

 D030L-SEGMENTID D030L-DOCTYPE INTO HEADER.

SELECT * FROM D030L WHERE

"SF2K900001

DDNAME BETWEEN TABLEFR AND TABLETO.

"SF2K900001

 CHECK D030L-DDMODIFY NE USR.

"SF2K900001

 SELECT * FROM D030T WHERE

"SF2K900001

 DDLANGUAGE EQ SY-LANGU AND

"SF2K900001

 DDNAME EQ D030L-DDNAME.

"SF2K900001

 ENDSELECT.

"SF2K900001

 EXTRACT HEADER.

"SF2K900001

ENDSELECT.

"SF2K900001

Validation Rules

Because of the nature of the impact of changes in validation rules to the entire SAP

system operation, any developer who is considering altering a validation rule must

send a message to MIT-ABAP@MITVMA.MIT.EDU as early in the development

process as possible. At a minimum this notification must be sent one week before

any development is transported to the test and integration system (SF5).

Configuration Changes that alter Transaction Fields

As with changes to validation rules, any configuration changes that alter any

transaction field, must be submitted in a mail message to MIT-

ABAP@MITVMA.MIT.EDU as early as possible with a minimum of one week

notification before transport to the test and integration system. Configuration

changes that alter the "required", "optional", or "not permitted" status of fields is

included in this specification.

 V. PERFORMANCE STANDARDS

mailto:MIT-ABAP@MITVMA.MIT.EDU
mailto:MIT-ABAP@MITVMA.MIT.EDU
mailto:MIT-ABAP@MITVMA.MIT.EDU

General Performance Standards

1. "Dead" code

Avoid leaving

"dead" code in the

program. Comment

out variables that

are not referenced

and code that is not

executed. To

analyze the

program, use the

Program Analysis

function in SE38 ->

Utilities -> Program

Analysis.

2. Use logical

databases

Choose the most

efficient logical data

base possible.

Study the selection

criteria and which

secondary indexes

are used for that

view. Provide the

appropriate

selection criteria to

limit the number of

data base reads.

Force users to

provide selection

criteria by

evaluating the

selection criteria

entered on the

selection screen

during the AT

SELECTION-

SCREEN event.

Finally, when

possible take

advantage of the

matchcodes to

increase speed.

3. Subroutine usage

For good

modularization, the

decision of whether

or not to execute a

subroutine should

be made before the

subroutine is called.

For example:

This is better:

IF f1 NE 0.

 PERFORM sub1.

ENDIF.

FORM sub1.

 ...

ENDFORM.

Than this:

PERFORM sub1.

 FORM sub1.

IF f1 NE 0.

 ...

ENDIF.

ENDFORM.

4. IF statements

When coding IF

tests, nest the

testing conditions

so that the outer

conditions are those

which are most

likely to fail. For

logical expressions

with AND, place the

mostly likely false

first and for the OR,

place the mostly

likely true first.

5. CASE vs. nested

IFs

When testing fields

"equal to"

something, one can

use either the

nested IF or the

CASE statement.

The CASE is better

for two reasons. It

is easier to read

and after about five

nested IFs the

performance of the

CASE is more

efficient.

6. MOVE-ing

structures

When records a and

b have the exact

same structure, it is

more efficient to

MOVE a TO b than

to MOVE-

CORRESPONDING a

TO b.
MOVE BSEG TO

*BSEG.

is better than

MOVE-

CORRESPONDING

BSEG TO *BSEG.

7. SELECT and

SELECT SINGLE

When using the

SELECT statement,

study the key and

always provide as

much of the left-

most part of the

key as possible. If

the entire key can

be qualified, code a

SELECT SINGLE not

just a SELECT. If

you are only

interested in the

first row or there is

only one row to be

returned, using

SELECT SINGLE can

increase

performance by up

to 3x.

8. Small internal

tables vs.

complete internal

tables

In general it is

better to minimize

the number of fields

declared in an

internal

table. While it may

be convenient to

declare an internal

table using the LIKE

command, in most

cases, programs

will not use all

fields in the SAP

standard table. For

example:

Instead of this:

data: tvbak like

vbak occurs 0

with header line.

Use this:

data: begin of

tvbak occurs 0,

 vbeln

like vbak-vbeln,

 ...

 end of

tvbak.

9. Row-level

processing of a

table

Selecting data into

an internal table

using an array fetch

versus a SELECT-

ENDELECT loop will

give at least a 2x

performance

improvement. After

the data has been

put into the internal

data, then row-level

processing can be

done. For

example, use:
select ... from

table <..>
 into

<itab>

(corresponding

fields of itab)
 where

...

loop at <itab>
 <do the row-

level processing

here>
endloop.

instead of using:

select ... from

table <..>
 where

...
 <row-level

processing>
 append <itab>.
endselect.

10. Row-level

processing and

SELECT SINGLE

Similar to the

processing of a

SELECT-

ENDSELECT loop,

when calling

multiple SELECT-

SINGLE commands

on a non-buffered

table (check Data

Dictionary ->

Technical Info), you

should do the

following to

improve

preformance: Use

the SELECT into

<itab> to buffer the

necessary rows in

an internal table,

next sort the rows

by the key fields,

then use a READ

TABLE WITH KEY ...

BINARY SEARCH in

place of the SELECT

SINGLE

command. Note

that this only make

sense when the

table you are

buffering is not too

large (this must be

made on a case by

case decision

basis).

11. READing single

records of

internal tables

When reading a

single record in an

internal table, the

READ TABLE WITH

KEY is not a direct

READ. Therefore,

SORT the table and

use READ TABLE

WITH KEY BINARY

SEARCH.

12. SORTing internal

tables

When SORTing

internal tables,

specify the fields to

SORTed.
SORT ITAB BY FLD1

FLD2.

is more efficient

than

SORT ITAB.

13. Number of entries

in an internal

table

To find out how

many entries are in

an internal table

use DESCRIBE.
DESCRIBE TABLE

ITAB LINES

CNTLNS.

is more efficient

than

LOOP AT ITAB.

 CNTLNS = CNTLNS

+ 1.

ENDLOOP.

14. Length of a field

To find out the

length of a field use

the string length

function.
FLDLEN = STRLEN

(FLD).

is more efficient

than

IF FLD CP ‘* #’.

ENDIF.

FLDLEN = SY-

FDPOS.

15. Performance

diagnosis

To diagnose

performance

problems, it is

recommended to

use the SAP

transaction SE30,

ABAP/4 Runtime

Analysis. The utility

allows statistical

analysis of

transactions and

programs.

16. Nested SELECTs

versus table

views

Since OPEN SQL

does not allow table

joins, often a

nested SELECT loop

will be used to

accomplish the

same

concept. However,

the performance of

nested SELECT

loops is very poor

in comparison to a

join. Hence, to

improve

performance by a

factor of 25x and

reduce network

load, you should

create a view in the

data dictionary then

use this view to

select data.

17. If nested SELECTs

must be used

As mentioned

previously,

performance can be

dramatically

improved by using

views instead of

nested SELECTs,

however, if this is

not possible, then

the following

example of using an

internal table in a

nested SELECT can

also improve

performance by a

factor of 5x:

Use this:

form select_good.

 data: tvbak

like vbak occurs

0 with header

line.

 data: tvbap

like vbap occurs

0 with header

line.

 select * from

vbak into table

tvbak up to 200

rows.

 select * from

vbap

 for

all entries in

tvbak

 where

vbeln=tvbak-

vbeln.

 endselect.

endform.

Instead of this:

form select_bad.

 select * from

vbak up to 200

rows.

 select * from

vbap where vbeln

= vbak-vbeln.

 endselect.

 endselect.

endform.

18. SELECT * versus

SELECTing

individual fields

In general, use a

SELECT statement

specifying a list of

fields instead of a

SELECT * to reduce

network traffic and

improve

performance. For

tables with only a

few fields the

improvements may

be minor, but many

SAP tables contain

more than 50 fields

when the program

needs only a

few. In the latter

case, the

performace gains

can be

substantial. For

example:

Use:

select vbeln

auart vbtyp from

table vbak

 into (vbak-

vbeln, vbak-

auart, vbak-

vbtyp)

 where ...

Instead of using:

select * from

vbak where ...

19. Avoid

unnecessary

statements

There are a few

cases where one

command is better

than two. For

example:

Use:

append <tab_wa>

to <tab>.

Instead of:

<tab> = <tab_wa>.

append <tab>

(modify <tab>).

And also, use:

if not <tab>[] is

initial.

Instead of:

describe table

<tab> lines

<line_counter>.

if <line_counter>

> 0.

20. Copying or

appending

internal tables

Use this:
<tab2>[] =

<tab1>[]. (if

<tab2> is empty)

Instead of this:

loop at <tab1>.

 append <tab1>

to <tab2>.

endloop.

However, if <tab2>

is not empty and

should not be

overwritten, then

use:

append lines of

<tab1> [from

index1] [to

index2] to

<tab2>.

ABAP/4 Tuning Checklist

The general performance standards above outline ways to increase efficiency from

many different perspectives, the following checklist was developed by SAP to

quickly review the most common performance problems. Please note that some

of the information may overlap with the general performance section.

Is the program using SELECT * statements?

 Convert them to SELECT column1 column2 or use projection views.

Are CHECK statements for table fields embedded in a
SELECT ... ENDSELECT loop?

 Incorporate the CHECK statements into the WHERE clause of the SELECT

statement.

Do SELECTS on non-key fields use an appropriate DB index

or is the table buffered?

 Create an index for the table in the data dictionary or buffer tables if they

are read only or read mostly.

Is the program using nested SELECTs to retrieve data?

 Convert nested SELECTs to database views, DB joins (v4.0), or SELECT xxx

FOR ALL ENTRIES IN ITAB.

Are there SELECTs without WHERE condition against files

that grow constantly (BSEG, MKPF, VBAK)?

 Program design is wrong - back to the drawing board.

Are SELECT accesses to master data files buffered (no

duplicate accesses with the same key)?

 Buffer accesses to master data files by storing the data in an internal table

and filling the table with the READ TABLE ... BINARY SEARCH method

Is the program using SELECT ... APPEND ITAB ...
ENDSELECT techniques to fill internal tables?

 Change the processing to read the data immediately into an internal table

(SELECT VBELN AUART ... INTO TABLE IVBAK ...)

Is the program using SELECT ORDER BY statements?

 Data should be read into an internal table first and then sorted unless there

is an appropriate index on the ORDER BY fields

Is the programming doing calculations or summartions
that can be done on the database via SUM, AVG, MIN, or MAX

functions of the SELECT statement?

 Use the calculation capabilities of the database via SELECT SUM, ...

Are internal tables processed using the READ TABLE itab

WITH KEY ... BINARY SEARCH technique?

 Change table accesses to use BINARY SEARCH method

Is the program inserting, updating, or deleting data in

dialog mode (not via an update function module)?

 Make sure that the program issues COMMIT WORK statements when one or

more logical units of work (LUWs) have been processed.

VI. NAMING STANDARDS

In general, any custom developed programs or objects should be named with the

‘Z’ for the first character. SAP has designated objects beginning with the letters ‘Y’

and ‘Z’ as customer named objects and insures that this name space will not be

overwritten during an upgrade.

Also, SAP regularly updates the recommended customer name ranges for all

development objects. For objects not included in this guide, please consult this

SAP-created document. It is located on the SAP OSS system in note #16466.

ABAP Reports

ABAP report names consist of 8 characters, and should be formatted as follows:

Position Usage

1 'Y' if program will not be migrated to production

'Z' if program will be migrated to production

2-3 Application Name Abbreviation (see table following)

4-7 Any 4-character acronym describing the program

Examples

ZARI007 Cashier Feed Validation Request

ZCOR001 Report CO objects missing funds and/or fund centers

However, if the ABAP program is being created as a global data include or

subroutine include, it should be formatted as follows:

Position Usage

1 'Z' as required for customer development

2-5 same as positions 4-7 in the main program

6-8 'TOP' if used for global data, data declarations, table declarations

'F##' for subroutines where ## is a number, 00 through 99.

Examples

ZFCCMTOP Credit card TOP Include

ZFCCMF01 Credit card FORM Include

Classification Objects and Class Types

Since classification objects and class types are more like programming data

constructs than they are like configuration data, MIT naming conventions should be

followed when creating new classification objects or class types. To differentiate

between SAP supplied classes and MIT developed classes the prefix 'MIT_' should

be used followed by either the SAP data element or a descriptive abbreviation. For

example, when creating a characteristic for a 'Profit Center' where the data element

is 'PRCTR' the name would be 'MIT_PRCTR'. In addition, SAP recommends to use

only letters from A-Z, numbers 0-9, and the underscore character in the name.

Development Classes

Development classes should only be created when a specific new project requires

all components to be linked for organizational purposes. Before creating a new

development class, please consult with the R3 Admin team (r3-admin@mit.edu).

Directories for file I/O

Most SAP system interfaces using flat ASCII files for input or output should use the

following directory paths for temporary and permanent interface files.

To R/3 from an EXTERNAL SYSTEM:

/usr/bridges/[environment name]/sapin/

To an EXTERNAL SYSTEM from R/3:

/usr/bridges/[environment name]/sapout/

Files written by one ABAP program and read by another:

mailto:r3-admin@mit.edu

/usr/bridges/[environment name]/saptmp/

Files already used by R/3:

/usr/bridges/[environment name]/archive/

The variable [environment name] should be determined at run-time by the

program. To generate this name, use the function Z_DETERMINE_FUNC_AREA. This

function will identify the [environment name] section of the path based on the

system id and the client of the calling R/3 system.

Sample code follows:

data: begin of myfile,

 part1(13) value '/usr/bridges/',

 part2(15), "dev2 or tst1 or prod

 part3(9) value '/saptmp/',

 part4(30) value 'flname',

 end of myfile.

…

initialization.

 call function 'Z_DETERMINE_FUNC_AREA'

 importing

 func = myfile-part2

 exceptions

 unknown_sysid = 1

 unknown_mandt = 2.

 if sy-subrc eq 0.

 condense myfile no-gaps.

 endif.

Function Groups

Since there is a limited amount of logical naming space available for function

groups, generally new groups should only be created when it is not possible to add

functions to existing groups.

Function Groups are named using the following convention:

Position Usage

1 'Z' as required for customer development

2-3 Application Name Abbreviation (see Appendix B)

4 Sequential group number

For example, ZBR0 is the function group for application "BR" for "Bridges" and

number ‘0’ sequentially. Before creating a new function group, please consult with

David Rosenberg (rosenberg@mit.edu).

Function Modules

mailto:rosenberg@mit.edu

Function module names should be as descriptive as possible given that there are 30

characters available for naming. They should be formatted as follows:

Position Usage

1 'Z' as required for customer development

2 '_' (an underscore)

3-4 Application Name Abbreviation (see Appendix B)

5-30 any use of descriptive words separated by underscores

Module Pools

Module pools should be named as follows:

Position Usage

1-3 'SAPM' as required by the system to denote online modules

5 'Z' to denote customer named object

6-7 Application Name Abbreviation (see Appendix B)

8 Sequential Number (0-9)

Module pool includes should be named as follows:

Position Usage

1 'M' as required by the system to denote online modules

2 'Z' to denote customer named object

3-4 Application Name Abbreviation (see Appendix B)

5 Sequential Number (0-9) corresponding to main program

6 'I' for PAI modules, 'O' for PBO modules, 'F' for subroutines

7-8 Sequential Number (00-99)

6-8 'TOP' if the include is the global data include

Requests & Tasks

VII. TIPS & TRICKS

ABAP: Passing unknown table structures into functions

Typically function modules must specify the exact structure of each parameter they

are passed, hence runtime structures cannot be handled easily in normal function

module creation. However, by using the ABAP programming construct ASSIGN

COMPONENT idx OF STRUCTURE record to <FS>, a function can determine the

structure of a record. For an example of how to develop a function to do this refer

to function Z_LIST_SELECT_OPTIONS which reads the structure of a RANGES table

in a SELECT-OPTION parameter.

ABAP: Multi-dimensional arrays

Support for one and two-dimensional arrays within ABAP is provided through the

use of internal tables. However, in the case of a 3-dimensional array, ABAP has no

naitive programming constucts. While a method could be devised to index a 3-

dimensional array via internal tables, the following code fragment demonstrates an

alternative approach using field symbols as pointers into data structures:

* This code fragment illustrates the use of a field symbol and

an

* ASSIGN statement to get the effect of having multi-

dimensional

* subscripted arrays. There are several costs of this method.

One is

* performance and the other is that EVERY cell in the multi-

dimensional

* array must be declared in a DATA (or CONSTANT, etc.)

statement at the

* beginning of the program.

* Using this method, you would have to have DATA statements

like the

* following four for EACH CELL of the multi-dimensional array.

DATA: VARA_001_005_006(11) VALUE 'Some value!'.

DATA: VARA_002_005_006(11) VALUE 'Other value'.

DATA: VARA_003_005_006(11) VALUE 'Next value!'.

DATA: VARA_004_005_006(11) VALUE 'The target!'.

DATA: BEGIN OF POINTER,

STEM(5) TYPE C VALUE 'vara_',

PART1(3) TYPE N,

SEP1(1) TYPE C VALUE '_',

PART2(3) TYPE N,

SEP2(1) TYPE C VALUE '_',

PART3(3) TYPE N,

END OF POINTER.

DATA POINTER_DEFAULT(11) VALUE 'The default'.

FIELD-SYMBOLS: <INDIRECT>.

* This is the example of using the multi-dimensional array in

the body

* of a program. You would have to have use something like the

following

* PERFORM for each change to the subscripts in a reference to

the

* multi-subscripted variable.

PERFORM ASSIGN_POINTER_3 USING 'vara_' 4 5 6.

WRITE: / 'Indirectly referencing through pointer, we get:',

<INDIRECT>.

PERFORM ASSIGN_POINTER_3 USING 'vara_' 10 11 12.

WRITE: / 'Indirectly referencing through pointer, we get:',

<INDIRECT>.

PERFORM ASSIGN_POINTER_3 USING 'vara_' 1 5 6.

WRITE: / 'Indirectly referencing through pointer, we get:',

<INDIRECT>.

FORM ASSIGN_POINTER_3 USING STEM SUB1 SUB2 SUB3 .

POINTER-STEM = STEM.

POINTER-PART1 = SUB1.

POINTER-PART2 = SUB2.

POINTER-PART3 = SUB3.

ASSIGN (POINTER) TO <INDIRECT>.

IF SY-SUBRC <> 0.

ASSIGN POINTER_DEFAULT TO <INDIRECT>.

ENDIF.

ENDFORM. " ASSIGN_POINTER_3

ABAP: Type coercion

Type coercion is typically defined as the means to force a variable of one type to be

another type. In ABAP programming, type coercion is most useful in ABAP for the

ASCII conversion of character data. The following code fragment is an example of

coercion which outputs ASCII character data:

data: begin of hex,

 byte type x,

 end of hex.

data: char type c.

data: temp like sy-index.

do 224 times.

 temp = sy-index + 31.

 hex-byte = temp.

 char = hex.

 write: / 'Decimal =', temp.

 write: 'Hex =', hex-byte.

 write: 'View =', char.

enddo.

BDC: Formatting date fields to be compatible with user

preferences

When writing BDCs that read dates to be entered into SAP transactions problems

occur when determining what date format to use when entering the data into its

corresponding field. Assume that the ABAP program that must call the transaction

can read the ‘date’ field properly from the input file, but it does not know which

format the data entry screen of the transaction requires as this may change based

on the user’s setup defaults.

The current best approach to solving this problem is:

1. Declare a date variable in the interface program to be LIKE SY-

DATUM.

2. Then, store the date (read from the input file) in the date variable in

the correct internal form (YYYYMMDD).

3. Write that date variable to a character string variable.

4. Use the character string variable as the value of the date field in the

transaction screen.

Conversions: Legacy-to-SAP cost objects and G/L accounts

Many programs and interfaces will need to convert MIT legacy cost objects and

accounts to the corresponding SAP account or object. Two custom MIT function

modules have been developed for use in this conversion process.

Z_GET_COST_OBJECT

This function will accept a 5-digit account and return the related SAP 7-digit cost

object. Also, by passing a 7-digit SAP cost object into the function, it will verify the

existence of the cost object.

Z_GET_GL_ACCOUNT

This function will accept a 3-digit object code as input and return the related SAP 6-

digit G/L account. Also, by passing a 6-digit G/L account into the function, it will

verify the existence of the account.

DDIC : Creating tables, data elements and domains

[This section pending input from MIT Data Administration group]

UNIX : Calling UNIX commands and scripts from ABAP

Programs

Often it is necessary to execute an external program as part of an ABAP program,

however, you should be very careful in doing so because any external command is

executed as the UNIX user <SID>adm. For example, if a program is written to call

the command ‘rm’ on the development system it is executed at the system level as

the user ‘sf2adm’.

For an example of how to call UNIX system commands, look at program ZUNIXCMD

on system SF2. Remember, you can call external programs either synchronously so

that your ABAP program will wait until they complete before continuing, or you can

call them asynchronously so that your ABAP program will continue execution

immediately.

Earlier programs written at MIT used the ‘CALL SYSTEM’ command. In the future,

this command should not be included in any new programs and should be removed

from existing programs when they are revised.

APPENDIX A

Basic ABAP/4 List Report

REPORT ZSKELREP.

*--

--

* Purpose:

*

*

*

*--

--

* Author:

* Date:

*--

--

* Modification Log:

*

*--

--

TABLES: ...

DATA: ...

SELECT-OPTIONS: ...

PARAMETERS: ...

FIELD-GROUPS: HEADER, ...

FIELD-SYMBOLS: ...

* Event which occurs before the selection screen is shown to

* the user.

INITIALIZATION.

* Event which occurs each time the user hits enter on the

* selection screen. This event is ignored in background

processing.

AT SELECTION-SCREEN.

TOP-OF-PAGE.

END-OF-PAGE.

START-OF-SELECTION.

* Definition of fields for FIELD-GROUP extract

INSERT: ... INTO HEADER.

GET ...

END-OF-SELECTION.

SORT ...

LOOP ...

 AT FIRST.

 ENDAT.

 AT NEW ...

http://web.mit.edu/fss/dev/newdevstand.html#APPENDIXA

 ENDAT.

 AT END OF ...

 ENDAT.

 AT LAST.

 ENDAT.

ENDLOOP.

* Subroutines

*--

--

*

*

*--

--

FORM ...

ENDFORM.

Interactive ABAP/4 List Report

REPORT ZSKELINT.

*--

--

* Purpose:

*

*

*

*--

--

* Author:

* Date:

*--

--

* Modification Log:

*

*--

--

TABLES: ...

DATA: ...

SELECT-OPTIONS: ...

PARAMETERS: ...

FIELD-SYMBOLS: ...

FIELD-GROUPS: ...

* Event which occurs before the selection screen is shown to

* the user.

INITIALIZATION.

* Event which occurs each time the user presses F2 or double-

clicks

* on the line in the selection screen. This event is ignored in

* background processing.

AT SELECTION-SCREEN.

TOP-OF-PAGE.

* Top of page for sublists

TOP-OF-PAGE DURING LINE-SELECTION.

END-OF-PAGE.

START-OF-SELECTION.

GET ...

END-OF-SELECTION.

* Produce main list report SY-LSIND = 0.

SORT ...

LOOP...

WRITE:/ ...

* Hide specific fields which are if importance to the line

HIDE: ...

ENDLOOP.

* Event which occurs when user hits a particular PF key, i.e.

PF6

* The hide area and SY-LISEL are automatically available.

* Produces a sublist SY-LSIND = 1-9. PF3 is automatic, will

always

* take the user back one list level, (SY-LSIND - 1).

AT PF...

* Event which occurs when a user types =LIST in the OK code

* The hide area and SY-LISEL are automatically available.

* Produces a sublist SY-LSIND = 1-9. PF3 is automatic, will

always

* take the user back one list level, (SY-LSIND - 1).

AT USER-COMMAND.

CASE SY-UCOMM.

 WHEN 'LIST'.

ENDCASE.

* Event which occurs when the user places the cursor to a

specific

* line on the report and hits enter.

* The hide area and SY-LISEL are automatically available.

* Produces a sublist SY-LSIND = 1-9. PF3 is automatic, will

always

* take the user back one list level, (SY-LSIND - 1).

AT LINE-SELECTION.

* Subroutines

*--

--

*

*

*--

--

FORM ...

ENDFORM.

Create a Sequential Dataset

REPORT ZSKELOUT.

*--

--

* Purpose:

*

*

*

*--

--

* Author:

* Date:

*--

--

* Modification Log:

*

*--

--

TABLES: ...

DATA: ...

SELECT-OPTIONS: ...

PARAMETERS: ...

FIELD-SYMBOLS: ...

START-OF-SELECTION.

GET ...

MOVE ... TO ...

WRITE ... TO ...

UNPACK ... TO ...

TRANSFER ... TO ...

END-OF-SELECTION.

* Subroutines

*--

--

*

*

*--

--

FORM ...

ENDFORM.

Read Sequential Dataset and Create a BDC Session

report zskelbdc.

*--

* Purpose:

*

*

*

*--

* Author:

* Date:

*--

* Modification Log:

*

*--

tables: ...

data: bdcdata like bdcdata occurs 0 with header line.

data: messtab like bdcmsgcoll occurs 0 with header line.

data: begin of tab occurs ...

 end of tab.

select-options: ...

parameters: ...

field-symbols: ...

*--

--*

start-of-selection.

 open dataset p_dataset in text mode.

 if sy-subrc <> 0.

 write: / text-e00, sy-subrc.

 stop.

 endif.

*--- Open the BDC Session -------------------------------------

--*

write: /(20) 'Create group'(i01), group.

skip.

call function 'BDC_OPEN_GROUP'

 exporting client = sy-mandt

 group = group

 user = user

 keep = keep

 holddate = holddate.

write: /(30) 'BDC_OPEN_GROUP'(i02), (12) 'returncode:'(i05),

 sy-subrc.

*----------- DYNPRO nnn ---------------------------------------

--*

perform bdc_dynpro using 'SAPMxxxx' 'nnn'.

perform bdc_field using 'TABL-FIELD' 'LITERAL'.

*----------- DYNPRO nnn ---------------------------------------

--*

perform bdc_dynpro using 'SAPMxxxx' 'nnn'.

perform bdc_field using 'TABL-FIELD' TAB-VAR.

*--

--*

call function 'BDC_INSERT'

 exporting tcode = tcode

 tables dynprotab = bdcdata.

write: /(25) 'BDC_INSERT'(i03), tcode,

 (12) 'returncode:'(i05), sy-subrc.

close dataset p_dataset.

*----- Close the BDC Session ----------------------------------

-

call function 'BDC_CLOSE_GROUP'.

write: /(30) 'BDC_CLOSE_GROUP'(i04),

 (12) 'returncode:'(i05), sy-subrc.

end-of-selection.

*--

--

* Subroutines *

*--

--

*--- Add a line to the DYNPRO Table ---------------------------

-

form bdc_dynpro using program dynpro.

 clear bdcdata.

 bdcdata-program = program.

 bdcdata-dynpro = dynpro.

 bdcdata-dynbegin = 'X'.

 append bdcdata.

endform.

*--- Add a field to a DYNPRO ----------------------------------

--

form bdc_field using fnam fval.

 clear bdcdata.

 bdcdata-fnam = fnam.

 bdcdata-fval = fval.

 append bdcdata.

endform.

CALL TRANSACTION USING Technique

REPORT ZSKELCLT.

*--

* Purpose:

*

*

*--

* Author:

* Date:

*--

* Modification Log:

*

*--

tables: indx, ...

data: return_code like sy-subrc,

 message_text(120).

data: begin of trantab occurs 10.

 include structure bdcdata.

data: end of trantab.

select-options: ...

parameters: ...

field-symbols: ...

start-of-selection.

*----------- DYNPRO nnn ---------------------------------------

--*

perform bdc_dynpro using 'SAPMxxxx' 'nnn'.

perform bdc_field using 'TABL-FIELD' 'LITERAL'.

*----------- DYNPRO nnn ---------------------------------------

--*

perform bdc_dynpro using 'SAPMxxxx' 'nnn'.

perform bdc_field using 'TABL-FIELD' TAB-VAR.

*--

--*

call transaction ' ' using trantab mode 'N' update 'S'.

* Message handling

return_code = sy-subrc.

* The following function module is a custom routine and can

* be obtained from SAP America.

call function 'ZZ_FORMAT_MESSAGE'

 exporting message_id = sy-msgid

 message_number = sy-msgno

 var1 = sy-msgv1

 var2 = sy-msgv2

 var3 = sy-msgv3

 var4 = sy-msgv4

 importing message_text = message_text

 exceptions not_found = 4.

if sy-subrc = 4.

 message_text = 'No message text found in T100'.

endif.

if return_code = 0.

* At this point, various things can be done to make the

* process slicker.

* Send the confirmation or error to the other program via RFC.

* Store key values and confirmation document number or error

* message in an ATAB table for future processing.

 move 'Transaction posted' TO ...

 move message_text to ...

 modify ...

else.

 move 'Transaction failed' to ...

 move message_text to ...

 modify ...

* In the event of errored transactions:

* Store the internal table in the INDX database for future

online

* processing of the SAP transaction.

 export trantab to indx(..) id ...

endif.

* Or create a batch input session for future processing.

refresh trantab.

end-of-selection.

*--

--

* Subroutines *

*--

--

*--- Add a line to the DYNPRO Table ---------------------------

-

form bdc_dynpro using program dynpro.

 clear bdcdata.

 bdcdata-program = program.

 bdcdata-dynpro = dynpro.

 bdcdata-dynbegin = 'X'.

 append bdcdata.

endform.

*--- Add a field to a DYNPRO ----------------------------------

--

form bdc_field using fnam fval.

 clear bdcdata.

 bdcdata-fnam = fnam.

 bdcdata-fval = fval.

 append bdcdata.

endform.

Appendix B: MIT Application Names Abbreviations

The following two-character abbreviations are used to identify certain

projects or modules when naming programming objects.

2-

Character

Abbr.

Application Name

AR Accounts Receivable

AU Authorization Checks

BR Bridges

BP Buy-Pay Process (incl.

Purchasing)

CD Change Documents

CO Controlling

FC Credit Card

GL Finance Functions

L* Labor Distribution

System

PM Plant Maintenance

R3 Basis

RQ Requisitions

TS Time Sheet (CATS

Related)

WF Workflow

WH Warehouse

