
Best-Practices & Learning’s

 ON

SAP ABAP

By

Prammendran

Prammenthiran.rajendran@wipro.com

Jan 5, 2010

 Version- 1.0 - 5th Jan 2010 - Initial Document

Introduction:
This document has been prepared based on the lessons learnt from the Bacardi
implementation project (V1). This can also be used as Best Practice in SAP ABAP
programming. It covers the common mistakes while developing an ABAP object (From
Junior to senior level).

Scope
This document is intended for ABAP developers from Junior to senior level.

Best-Practices/Learning

 Danger of using “CHECK” statement in the user exits which has multiple
enhancements:-

CHECK statement will terminate the control from the current subroutine. So, the
control will not go to the next enhancement of the same user exit.

For example, We have multiple enhancements in the user exit subroutine
“USEREXIT_MOVE_FIELD_TO_VBAK” Of the program “MV45AFZZ” as below,

CHECK statement has been
replaced with IF statement to
proceed further.

Earlier, the CHECK statement of the above screen shot has stopped the program control
and it came out from the sub-routine without processing the next enhancement of the
same user exit. So, it has been replaced with IF……ENDIF.

 Putting much logic in Smart forms can be avoided:-

 Smart form has the very good feature of writing the logic / ABAP code directly
rather than in Driver program. But, this feature will become a disadvantage when it
comes for rework / support team. Because it is bit difficult to understand the process
flow logic of the whole smart form and change the logic (even if it is a very small
correction). So, it is always good to write the whole logic or as much as possible logic in
driver program itself and pass the final result to Smart form.

This can be avoided.

Write the logic in Driver program
itself for better readability and
flexibility to change / rework
whenever required.

 Avoid hard coding the text in smart forms / ABAP programs :-

 Hard coding the specified text directly in the program or Smart forms will lead to
language specific issue. For example, the header / footer text may change if the logon
language is Germany or French. See the below screen shot for better understanding.

Text module can be uniquely assigned to a language using the logon language. When
including a text module, we can also access translations of the text module, for example,
to include an English text module in a German form.

Can be avoided. Not suitable
for language specific texts.
Use Text Module rather than
hard coding it directly in the
Smart form layout.

 Danger of using "USER_SETTING = 'X'" while calling the Smart forms function
module from the driver program :-

 Using this command is fine in foreground processing. But this will put a DUMP in
Background processing. We can not expect a default local printer for all the user ids.
This can be avoided by writing an extra logic as below,

Extra logic for background
processing. In this case,
program will take the network
printer which has been
configured through condition
table.

For Foreground processing. Program will take the
default printer as per the user setting (SU01).

 Avoid Hard coding the Language key in the WHERE conditions :-

 Generally, developers (especially junior developers) used to hard code the language
key with ‘E’ (English). This will give a wrong text if the user has logged in with a different
language like Germen or French.

Good practice: Log on
language key has been
taken.

Bad practice: Language
has been hard coded
through constant
(English).

 Be aware of Domain Conversion Rule :-

 The domain Conversion rule of a particular field will affect the hardcoded / passed
value in WHERE condition. This will not give you any record. For example, PALEDGER
= '10' will be converted to '02'. Be aware of that. Better to declare a variable / constant
with the same table/field type and pass the value, rather than direct hard coding (check)

Check the domain for a particular field as below.

“Conversion routine”
for the field
“PALEDGER”

Search help shows as “10”. But
we need to pass it as “02” in our
custom program. Then only it
can fetch the required data.

 SAP Standard Internal Tables has to be handled carefully in user exits

 We have to update the SAP standard internal tables very carefully in user exits, if
there is a requirement to change / add data. For example, we had a requirement to
update the Partner Functions of the Sales order through SD module User exit
(USEREXIT_MOVE_FIELD_TO_VBAK). We faced several “Update Termination Errors”
while saving the Sales order because of this user exit. We analyzed the user exit code
with standard functionality and updated the (SAP standard) internal tables XVBPA and
YVBPA with “Update” flag (UPDKZ) as below. This has resolved the issue of getting
several dumps in SM13 / ST22.

Conclusions
It is always recommended to include all the Lessons Learnt / Best Practices in the “Code
Review Check list” to avoid such mistakes in future deliverables. These points are
applicable to both Implementation and Support Projects.

Thank You,

Prammendran.

Update Flag UPDKZ has to be updated
properly for both XVBPA & YVBPA.

